
Containers in HPC – Podman

UManitoba Spring 2025
High-Performance Computing And Cloud

Workshop

Stefano Ansaloni

University of Manitoba

May 23, 2025

About me

Stefano Ansaloni

Cloud Computing Specialist at University of Manitoba
(part of the Advanced Research Computing team)

Software Developer and DevOps Specialist since 2017

Linux User/Admin since 2005

What is a container

From Wikipedia (Containerization):

Containerization is operating-system–level virtualization or application-level
virtualization so that softwares can run in isolated user spaces called “con-
tainers” in any cloud or non-cloud environment, regardless of type or vendor.

https://en.wikipedia.org/wiki/Container_(virtualization)

Properties of containers

▶ Each container is a fully functional and portable computing environment
surrounding the application and keeping it independent of other environments
running in parallel

▶ Each container simulates a different software application and runs isolated
processes (including configurations, libraries, and dependencies)

▶ Multiple containers share a common operating system kernel (operative system)

Wikipedia [Containerization]

https://en.wikipedia.org/wiki/Container_(virtualization)#Usage

Terminology

Image
Archive (or number of archives – i.e. “layers”) of a filesystem tree
along with metadata

Containerfile
Recipe for building an image, including OS and
software within the image (e.g. Dockerfile)

Container
A running instance of an image
(can be a computing process, or a service daemon)

Container Runtime
Lower level component responsible for reading the image and
communicating with the host kernel to start containerized
processes (e.g. runc, crun)

OCI
(Open Container Initiative)

Open governance structure that creates open industry standards
for container formats and runtimes

Registry
An online storage area for images
(e.g. DockerHub, Quay.io)

Focusing On Podman

What is Podman

From Wikipedia (Podman):

Podman (pod manager) is an open source OCI-compliant container manage-
ment tool from Red Hat used for handling containers, images, volumes, and
pods; offering APIs for the lifecycle management of those components (the
API is identical to the Docker API).

https://en.wikipedia.org/wiki/Podman

Why not Docker

Podman aims to provide a more secure and lightweight alternative to Docker:

▶ Daemonless ⇒ Don’t rely on a process with
root privileges to run containers

▶ Rootless containers ⇒
Run containers as regular users,
without interacting with a
root-owned daemon

▶ User namespaces ⇒ Careful use of kernel capabilities

Red Hat [What is Podman]

Better Stack [Exploring Podman]

https://www.redhat.com/en/topics/containers/what-is-podman
https://betterstack.com/community/guides/scaling-docker/podman-vs-docker

Compatibility with Docker

For most use cases, Podman can be used as a “drop-in” replacement for Docker:

▶ Podman CLI syntax is almost the same as Docker’s one

▶ Podman can use the same images as Docker

▶ Podman can use the same registries as Docker

Podman on HPC – Disclaimer

Podman is considered an advanced tool to be used only by experienced users when
their workloads cannot be run using standard HPC programs/modules, or through
Singularity/Apptainer (i.e. Podman should be the very last resort).

In any case, Podman must NOT be used:

▶ on login nodes

▶ to execute long-running services (e.g. daemons, databases, . . .)

Podman on HPC

Podman is available as a module on national clusters and UManitoba HPC cluster
(Grex).

HPC System Command Current version

National Clusters module load StdEnv/2023 podman 4.9.5

Grex module load podman 5.5.0

Podman on Grex

When on Grex, it is important to use the local version of Podman:

▶ local proxy cache for registries

▶ better default configuration

▶ newer version

Basic commands

Print version podman version

Pull image podman pull <REGISTRY>/<NAME>:<TAG>

Delete image podman image rm

List images podman image ls

Create and start a container podman run [OPTS] [CMD [ARGS]]

Execute command inside a
running container

podman exec [OPTS] <CNT> [CMD [ARGS]]

Stop a running container podman stop <CNT>

Start a stopped container podman start <CNT>

Delete a container podman rm <CNT>

List containers podman ps [-a]

Podman [Commands]

https://docs.podman.io/en/stable/Commands.html

Getting an image
From a registry

The “pull” subcommand can be used to download an image from an online registry
(e.g. DockerHub) into a local (temporary) registry, that is available only on node
where the pull has been performed and will be deleted when the job ends.

podman pull docker.io/alpine

Podman [Pull Command]

https://docs.podman.io/en/stable/markdown/podman-pull.1.html

Getting an image
Building your own

If it becomes necessary to build a custom image, it can be accomplished with the
“build” subcommand.

By default the build image will be saved into a local (temporary) registry, that is
available only on node where the build has been performed and will be deleted when
the job ends.

To overcome this problem, the “--tag”/“-t” option can be specified using
“docker-archive:” as the tag prefix.

podman build -t docker-archive:/path/to/custom.image \
-f /path/to/Containerfile

Podman [Build Command]

https://docs.podman.io/en/stable/markdown/podman-build.1.html

Binding host directories

To let containers access data on the host (e.g. the user home directory), the
“--volume”/“-v” option can be specified (multiple times) using the format
“HOST DIR:CNT DIR”.

podman run -v $HOME:$HOME docker.io/alpine ls $HOME

When binding directories, the container will be able to read and write the content of
those directories (if the user has the correct filesystem permissions).

Podman [Run Command - Volume Option]

https://docs.podman.io/en/stable/markdown/podman-run.1.html#volume-v-source-volume-host-dir-container-dir-options

Setting environment variables

To option “--env”/“-e” can be specified (multiple times) to set environment
variables inside the container.

podman run -e V1="hi" -e V2="$USER" docker.io/alpine sh -c ’echo $V1 $V2’

If the value is not specified, Podman will map the host variable value into the
container.

podman run -e USER docker.io/alpine sh -c ’echo $USER’

Podman [Run Command - Env Option]

https://docs.podman.io/en/stable/markdown/podman-run.1.html#env-e-env

Demo

Running a GROMACS benchmark with Podman

https://www.gromacs.org

Running a GROMACS benchmark with Podman
Specifications

Container Engine ⇒ Podman (on Grex)

Image ⇒ nvcr.io/hpc/gromacs:2023.2
(from the nVidia NGC Catalog)

Software ⇒ GROMACS

Benchmark ⇒ STMV

https://catalog.ngc.nvidia.com/orgs/hpc/containers/gromacs

Is Podman a silver bullet?

▶ Is the same software already provided via modules-based HPC software stack?

▶ Running software from well-built images

▶ Making or finding a suitable image is a bit of work

▶ Bleeding-edge versions of programs could be poorly maintained/tested (including
their images)

▶ Encapsulating software and sometimes data to reduce number of files (e.g. python
or conda based programs)

XKCD [1988]

https://xkcd.com/1988

Questions?

Thank you

