
Using GP GPU compute on Grex

UofM-Spring-Workshop 2022
May 2022

Grigory Shamov

● GP GPU (general-purpose Graphical Processor Unit) can be used for HPC
○ They have thousands of specialized computing units
○ Accelerating math (integer, floating point in single and double precision)
○ Accelerating Machine Learning w tensor cores
○ NVidia is pioneer, has largest scale of the market

● Software needs to be rewritten for GPUs
○ Need dev tools (CUDA, Nvidia HPC pack, libraries like CUDNN)
○ ML packages (TensorFlow, etc.)

● On HPC or cloud, need to be able to find and specify the GPU resources

What is GPU for

● National systems: every HPC and Arbutus cloud has a GPU partition
○ Cedar, Graham, Beluga, Narval have a mix of P100s , V100s, A100s
○ Niagara has a sister GPU cluster, Mist
○ Arbutus OpenStack cloud has virtual GPUs (V100s)

● Local HPC resource (Grex, GP nodes)
○ Two nodes (--partition=gpu) of 4xV100 32GB VRAM each, NVLink, 192GB RAM, 32 CPU cores (Intel 5128)

● Local HPC resource (Grex, user-contributed nodes)
○ Three nodes (--partition=stamps-b) of 4xV100 16GB VRAM each, NVLink, 192GB RAM, 32 CPU cores (Intel

5128)
○ One HGX-2 node (--partition=livi-b) 16x V100 32GB VRAM each, NVSwitch 1.5TB RAM, 48 CPU cores (Intel

6248R)
○ Two nodes (--partition=aggro-b) 2x A30 24GB VRAM each, 512 GB RAM, 24 CPU AMD 7402

● Contributors would use livi , stamps and aggro partitions to have preemptive access with 1h delay

What GPU capacity is available

● SLURM syntax for GPUs
○ You will need to select a Partition that has GPUs! (--partition=stamps-b)
○ You will need to specify number of GPUs and other resources (CPU, mem, time)
○ Something called cons_TRES; –gpus=N; –gpus-per-node=N; –mem-per-gpu=M
○ Not all combinations of –nodes, –ntasks and –X-per-Y are sensible!

● How much CPUs and memory per GPU is to ask?
○ Start with average (i.e., on the 4x V100 node of 32 GPU, –cpus-per-gpu=8

–mem-per-cpu=4000M)

● Interactive job example w salloc
○ salloc --partition=stamps-b --gpus=1 --cpus-per-gpu=8 --mem-per-cpu=4000
○ Try nvidia-smi ; try a sample from /global/software/cuda/11.4.3-gcc48/samples

● Batch job example with sbatch

How to get a GPU on Grex

● A physical GPU ! (lets talk about NVidia)

● GPU kernel drivers and libraries installed and working (check with nvidia-smi)

● Some Ready-made GPU software or

● CUDA for code development (must match the supported GPU driver version and GPU capabilities)

● Sometimes, NVidia HPC suite for OpenACC etc., or other GPU-based high level coding language

● Or some Libraries (cuBLAS, ML, Magma/Plasma, PETSc) that use GPUs

Prerequisites for a GPU calculation

● Canned GPU codes, commercial : Gaussian, etc.; Guppy (bioinformatics); Matlab

● ML Packages (Tensorflow etc.) – can installed via a Python packaging like Conda.

● Compiling your own software;
○ Need “module load gcc/$ver” or “module load intel/$ver” first, then “module load cuda/$ver”
○ CUDA versions 10.2 and 11.3 are available on Grex (module spider cuda) . Gives nvcc
○ After loading the modules, proceed with cmake or configure, make etc. as per package’s

instruction
○ Some GPU codes need NVidia HPC toolkit (Portland Group compilers for OpenACC)

● Containers: Singularity (now Apptainer) and NVidia NGC repository
○ https://catalog.ngc.nvidia.com/
○ Get package from NGC Cloud using singularity pull
○ Run singularity exec as described (requires bind-mounting container directories to local

directories , usually).

Getting GPU software

https://catalog.ngc.nvidia.com/

