
Introduction to HPC and available
resources: UofM and Compute Canada

UofM-Spring-Workshop 2021
April 21st-22nd, 2021

Ali Kerrache

Outline

★ Available resources:
○ Compute Canada: cedar, graham, beluga, niagara, cloud.
○ Grex (UofM)
○ New additions to Grex: hardware and RAC-2021

★ Basic tools for using HPC clusters:
○ Linux shell (Terminal)
○ Connect to a cluster: ssh client, PuTTY, MobXterm
○ Transfer files: scp, sftp, WinSCP, ...
○ Submit and monitor jobs: sbatch, salloc, squeue, … etc.

Compute Canada partners

Compute Canada clusters

https://docs.computecanada.ca/wiki/Compute_Canada_Documentation

System Cores GPUs Storage Notes

Cedar 94,528 1352 29 PB NVidia P100; V100 Volta GPUs

Graham 41,548 520 19 PB NVidia P100; V100; T4 GPUs

Beluga 28,000 688 27 PB NVidia V100 GPUs

Niagara; Mist 80,640 216 16 PB Large parallel jobs; [4 NVIDIA V100-32GB]

Arbutus 16008 108 17.3 PB Physical cores: generally hyper-threaded.

GP cloud * * * Cloud partitions are available on GP
systems for special purposes.

Grex, a cluster for UofM users
Partition Nodes [CPUs/GPUs] Cores/node Cores Memory Max Wall Time

compute 288 12 3456 46 GB 21 days

bigmem 24 12 288 94 GB 14 days

skylake 12 40 480 376 GB 14 days

gpu 2 [4 V100 - 32 GB] 32 64 187 GB 3 days

stamps; -b 3 [4 V100 - 16 GB] 32 96 187 GB 21 days / 7 days

davis; -b 4 20 80 31GB 21 days / 7 days

livi, -b 1 [16 V100 - 32 GB] 48 48 1.5 TB 21 days / 7 days

* 42 52 2184 96 GB *

Partitions on Grex: partition-list

Grex upgrade and RAC 2021

★ Grex upgrade: available for RAC 2021 (ARC@umanitoba.ca)
○ 42 compute nodes [52 cores, 96 GB of memory]

★ RAC 20: 2664 CPU cores (deadline: May 1st, 2021)
○ 12 nodes [40 cores, Intel CascadeLake 6248 2.5GHz, 384 GB RAM]
○ 42 nodes [52 cores, Intel CascadeLake 6230R 2.1GHz , 96 GB RAM]

★ GP resources: first arrived, first served
○ 288 of 12 cores.
○ 24 of 12 cores.
○ 2 GPUs [32 cores, Tesla V100 32GB, 178 GB]

★ Contributed hardware:
○ partitions with suffix “-b”
○ could be used by any other user when not used by the contributor.

Structure of HPC clusters

Access to Compute Canada/Grex
Step 1:
Faculty member registers in the Compute Canada
Database (CCDB): http://ccdb.computecanada.ca

Step 2:
Once an account is approved, students / colleagues can
register as group members (require CCRI):
CCDB account Gives access to the New systems:
Access to Compute Canada and Grex resources is free
for the eligible researchers. Everyone gets a “Default”
share. Every PI gets 1 TB of storage by default.
Resource Allocation Competitions (about 80%) are held
annually, to distribute resources based on proposal’s
merit. The remaining 20% are used for default share.

Compute Canada: Rapid Access
Service; 10 TB of storage per cluster.
RAC for storage > 10 TB.
Send an email to: support@computecanada.ca

http://ccdb.computecanada.ca/

HPC: workflow and tools

Connect to a cluster

Linux:
ssh; X2Go
Mac:
ssh, X2Go
Windows:
Putty, MobaXterm, ...

HPC
● Connect
● Transfer files
● Compile codes
● Test jobs
● Run jobs
● Analyze data
● Visualisation

Transfer files
Linux:
scp; sftp; rsync

Mac:
ssp, sftp; rsync; …
Windows:
WinScp, FileZilla,
MobaXterm, …

https://monitor.hpc.umanitoba.ca/doc/

Linux: carpentry courses

Carpentry courses for
beginners:
● Introducing the shell
● Navigating with files

and directories
● Working with files and

directories
● Pipes and filters
● Loops
● Shell scripts
● Finding files and

programshttps://swcarpentry.github.io/shell-novice/

How to connect to a cluster?

Very Important
Don’t share your
password with anyone.
Don’t send your
password by email.
In case you forgot your
password, it is possible
to reset it from CCDB.

Connect from a terminal:
Grex: ~$ ssh -XY username@grex.westgrid.ca
Cedar: ~$ ssh -XY username@cedar.computecanada.ca
Graham: ~$ ssh -XY username@graham.computecanada.ca
Beluga: ~$ ssh -XY username@beluga.computecanada.ca

Syntaxe:
~$ ssh [options] <username>@<hostname>
options=-X; -Y {X11 forwarding}
Windows: install PuTTy, MobaXterm, …
Mac: install XQuartz

❖ password
❖ ssh keys

https://www.xquartz.org/

Connect from Windows

❖ Install ssh client:
➢ Putty: http://www.putty.org/
➢ MobaXterm: https://mobaxterm.mobatek.net/
❖ How to connect:

✓ Login: your user name
✓ Host: grex.westgrid.ca
✓ Password: your password
✓ Port: 22

❖ Use CygWin: same environment as Linux

http://www.putty.org/
https://mobaxterm.mobatek.net/

X2Go: Linux/Mac/Windows

Why X2Go: Access to GUI
How to use X2Go?
● Ask first if X2Go is installed on the remote machine.
● If yes, install X2Go client on your laptop or Desktop.
● Linux, Windows, Mac (XQuartz)
● Launch X2Go.
● Create a session and connect.

Login: your user name
Host: bison.westgrid.ca (or tatanka.westgrid.ca)
Port: 22
Session: ICEWM

File system and quota

Project in Compute Canada clusters

1 TB per group; extension up to 10 TB
Backup; Allocatable via RAC (>10 TB)

Compute Canada:
/home/$USER: 50 GB, daily backup
/scratch/$USER: 20 TB, no backup, purged

Grex:
/home/$USER:
30 GB, backup
/global/scratch/$USER:
2 TB, no backup, no
purge.

Quota: diskusage_report

[kerrache@cedar1: ~]$ diskusage_report
 Description Space # of files
 /home (user kerrache) 72M/50G 652/500k
 /scratch (user kerrache) 1978M/20T 8517/1000k
 /project (group kerrache) 0/2048k 0/500k
 /project (group def-kerrache-ab) 40G/1000G 327/500k
 /project (group def-kerrache) 1838G/10T 9623/500k

[kerrache@tatanka ~]$ diskusage_report
 Description (FS) Space (U/Q) # of files (U/Q)
 /home (kerrache) 226M/31G 2381/500k
 /global/scratch (kerrache) 519G/2147G 27k/1000k

File transfer

Terminal: Linux; Mac; CygWin; MobaXterm, PuTTy.
Check if scp; sftp; rsync are supported.
Syntax for scp: scp [Options] [Target] [Destination]
Syntax for rsync: rsync [Options] [Target] [Destination]
Options: for details use man scp or man rsync from your terminal.
Target: file(s) or directory(ies) to copy (exact path).
Destination: where to copy the files (exact path).
Path on remote machine: examples of a path on Grex.
 username@grex.westgrid.ca:/home/username/{Your_Dir}; ~/{Your_Dir}
 username@grex.westgrid.ca:~/{Your_Dir}
 username@grex.westgrid.ca:/global/scratch/username/{Your_Dir}

mailto:username@grex.westgrid.ca

File transfer: FileZilla, WinSCP

● Install WinScp or FileZilla.
● Launch the program.
● Connect with your credentials.

● Navigate on your local machine.
● Navigate on remote machine.
● Copy your files (works on both ways).

Software on HPC clusters

Home made: programs, scripts and tools, … etc.

Up to a user, …

Free Software: GNU Public License.

 Open Source, Binaries, Libraries, …

Commercial Software:

 Contact us with some details about the license, …

 We install the program and protect it with a POSIX group.

Software distribution

★ Operating system package managers / repos
○ Ubuntu: $ sudo apt-get install bowtie2
○ CentOS: $ sudo yum install bowtie2 # might need EPEL repo
○ On HPC, users do not have sudo! {It is not required; mo need to ask for it}

★ Local install from sources or binaries, usually to $HOME
○ wget https://github.com/BenLangmead/bowtie2/releases/download/v2.3.4.3/bowtie2-2.3.4.3-linux-x86_64.zip
○ unzip bowtie2-2.3.4.3-linux-x86_64.zip
○ bowtie2-2.3.4.3-linux-x86_64/bowtie2 -?
○ OR build from sources, specifying the PREFIX, CMAKE_INSTALL_PREFIX or --prefix to $HOME/bowtie2/
○ and add the locations to PATH, LD_LIBRARY_PATH etc.

★ Using a centralized HPC stack
○ installed and maintained by analysts: compilers, libraries, domain specific software, … etc.
○ ask for installing a given program or updating modules if needed

https://github.com/BenLangmead/bowtie2/releases/download/v2.3.4.3/bowtie2-2.3.4.3-linux-x86_64.zip

Software on HPC clusters

★ Number-crunching software environment:
○ Compilers (GCC, Intel), BLAS/LAPACK/PETSc, MPI, OpenMP, … etc.

★ Dynamic languages and libraries: R, Python, Perl, Julia, ...
★ Domain-specific applications and packages:

○ Engineering, Chemistry, Physics, Machine-Learning, ...
★ Biomolecular, genomics etc.
★ CC Centralized software stack, distributed via CVMFS:

○ https://docs.computecanada.ca/wiki/Available_software
★ Grex:

○ CCEnv: access to public repository of Compute Canada
○ GrexEnv: modules installed locally on Grex.

https://docs.computecanada.ca/wiki/Available_software

Find a software on a cluster
★ Why modules?

○ Control different versions of the same program.
○ Avoid conflicts between different versions and libraries.
○ Set the right path to each program or library.

★ Useful commands for working with modules:
○ module list; module avail
○ module spider <soft>/<version>
○ module load soft/version; module unload {rm} <soft>/<version>
○ module show soft/version; module help <soft>/<version>
○ module purge; module --force purge
○ module use ~/modulefiles; module unuse ~/modulefiles

Running jobs on a cluster

★ When you connect you get interactive session on a login node:
○ Resources there are limited: used for basic operations

■ editing files, compiling codes, download or transfer data, submit
and monitor jobs, run short tests {no memory intensive test}

○ Performance can suffer greatly from oversubscription
★ Submitting batch jobs for production work is mandatory: sbatch

○ Wrap commands and resource requests in a “job script”: myscript.sh
○ SLURM uses sbatch; submit a job using: sbatch myscript.sh

sbatch <some options> myscript.sh
★ For interactive work, submit interactive jobs: salloc

○ SLURM uses salloc for interactive jobs
○ The jobs will run on dedicated compute nodes

Job requirements

★ What do you need to know before submitting a job?
○ Is the program available? If not, install it or ask support for help.
○ What type of program are you using?

■ Serial, Threaded [OpenMP], MPI based, GPU, …
○ Prepare your input files: locally or transfer from your computer.
○ Test your program:

■ Interactive job via salloc: access to a compute node
■ On login node if the test is not memory nor CPU intensive.

○ Prepare a script “myscript.sh” with the all requirements:
■ Memory, Number of cores, Nodes, Wall time, modules,

partition, accounting group, command line to run the code.
● Submit the job and monitor it: sbatch, squeue, sacct, seff … etc

Example of SLURM script

#!/bin/bash
#SBATCH --account=def-somegroup
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=2500M
#SBATCH --time=3-00:00:00
#SBATCH --partition=compute

Load appropriate modules:
module load gaussian
echo "Starting run at: `date`”
g16 < my-input.com > my-output.out
echo "Program finished with exit code $? at: `date`"

SLURM directives:
● Default: 1 core, 256mb, 3 hours
● account, number of tasks, memory

per core, wall time, partition, …
● Other: E-mail-notification, … etc.

Submit and monitor the job:
● sbatch myscript.sh
● squeue -u $USER

Partition:
● partition-list
● sinfo -p <partition name>

Monitor your jobs

squeue -u $USER [-t RUNNING] [-t PENDING] # list all current jobs.
squeue -p PartitionName # list all jobs in a partition.
sinfo # view information about Slurm partitions.
sacct -j jobID --format=JobID,MaxRSS,Elapsed # resources used by completed job.
sacct -u $USER --format=JobID,JobName,AveCPU,MaxRSS,MaxVMSize,Elapsed
seff -d jobID # produce a detailed usage/efficiency report for the job.
sprio [-j jobID1,jobID2] [-u $USER] # list job priority information.
sshare -U --user $USER # show usage info for user.
sinfo --states=idle; -s; -p <partition> # show idle nodes; more about partitions.
scancel [-t PENDING] [-u $USER] [jobID] # kill/cancel jobs.
scontrol show job -dd jobID #show more information about the job.

Queue overview
Custom script: grex-summarize-queue

Estimating resources: CPUs
★ How to estimate the CPU resources?

○ No direct answer: it depends on the code
○ Serial code: 1 core [--ntasks=1 --mem=2500M]
○ Threaded and OpenMP: no more than available cores on a node [--cpus-per-task=12]
○ MPI jobs: can run across the nodes [--nodes=2 --ntasks-per-node=12 --mem=0].

★ Are threaded jobs very efficient?
○ Depends on how the code is written
○ Does not scale very well
○ Run a benchmark and compare the performance and efficiency.

★ Are MPI jobs very efficient?
○ Scale very well with the problem size
○ Limited number of cores for small size: when using domain decomposition
○ Run a benchmark and compare the efficiency.

Estimating resources: memory
★ How to estimate the memory for my job?

○ No direct answer: it depends on the code
○ Java applications require more memory in general
○ Hard to estimate the memory when running R, Python, Perl, …

★ To estimate the memory, run tests:
○ Interactive job, ssh to the node and run top -u $USER {-H}
○ Start smaller and increase the memory
○ Use whole memory of the node; seff <JOBID>; then adjust for similar jobs
○ MPI jobs can aggregate more memory when increasing the number of cores

★ What are the best practices for evaluation the memory:
○ Run tests and see how much memory is used for your jobs {seff; sacct}
○ Do not oversubscribe the memory since it will affect the usage and the waiting time:

accounting group charged for resources reserved and not used properly.

Estimating resources: run time
★ How to estimate the run time for my job?

○ No direct answer: it depends on the job and the problem size
○ See if the code can use checkpoints
○ For linear problems: use a small set; then estimate the run time accordingly if you use

more steps (extrapolate).
★ To estimate the time, run tests:

○ Over-estimate the time for the first tests and adjust for similar jobs and problem size.
★ What are the best practices for time used to run jobs?

○ Have a good estimation of the run time after multiple tests.
○ Analyse the time used for previous successful jobs.
○ Add a margin of 15 to 20 % of that time to be sure that the jobs will finish.
○ Do not overestimate the wall time since it will affect the start time: longer jobs have

access to smaller partition on the cluster (Compute Canada clusters).

Thank you for your attention

Any question?

Useful links
Compute Canada:
https://docs.computecanada.ca/wiki/Compute_Canada_Documentation
CCDB: https://ccdb.computecanada.ca/security/login
CC Software: https://docs.computecanada.ca/wiki/Available_software
Running Jobs: https://docs.computecanada.ca/wiki/Running_jobs
PuTTy: http://www.putty.org/
MobaXterm: https://mobaxterm.mobatek.net/
X2Go: https://wiki.x2go.org/doku.php
Grex: https://monitor.hpc.umanitoba.ca/doc/

Help and support on CC: support@computecanada.ca
WG training material: https://westgrid.github.io/trainingMaterials/

https://docs.computecanada.ca/wiki/Compute_Canada_Documentation
https://docs.computecanada.ca/wiki/Compute_Canada_Documentation
https://ccdb.computecanada.ca/security/login
https://docs.computecanada.ca/wiki/Available_software
https://docs.computecanada.ca/wiki/Running_jobs
http://www.putty.org/
https://mobaxterm.mobatek.net/
https://wiki.x2go.org/doku.php
https://monitor.hpc.umanitoba.ca/doc/
https://westgrid.github.io/trainingMaterials/

