
Introduction to Version Control Systems 2

DATA 4010 Seminar – Fall 2023

Stefano Ansaloni

University of Manitoba

September 25, 2023

About me

Stefano Ansaloni

Cloud Computing Specialist at University of Manitoba
(part of the HPC support team)

Software Developer and DevOps Specialist since 2017

Linux User/Admin since 2005

Refresh – What is a Git remote?

A remote (or remote repository) is a copy of a local repository hosted
on the Internet or network somewhere.

Remote repositories are used to ease the collaboration between mul-
tiple developers by pushing and pulling data to and from them when
they need to share work.

Pro Git book [2.5 Git Basics - Working with Remotes]

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes

Code hosting platforms

GitHub https://github.com

GitLab https://gitlab.com

Bitbucket https://bitbucket.org

Gitea https://gitea.com

Codeberg https://codeberg.org

Note: remember that is your responsibility to read, understand, and decide whether to accept
all the policies/user agreements of the service(s) you use.

https://github.com
https://github.com
https://github.com
https://gitea.com
https://codeberg.org

More than just remote repositories

In addition to remote repositories, those services usually provide:

▶ access control

▶ bug tracking

▶ task management

▶ continuous integration (CI)

▶ continuous delivery/deployment (CD)

▶ wiki

▶ ... and more

GitHub

GitHub is a common choice to host code for public open-source
projects, or to create private repositories for personal/non-public
projects.

It is also the world’s largest source code host as of June 2023:

▶ over 100 million developers

▶ more than 372 million repositories

▶ ∼ 28 million public repositories

GitHub will require all users who contribute code, to enable one or
more forms of two-factor authentication (2FA) by the end of 2023.

Wikipedia [GitHub]

GitHub [2FA first announcement]

GitHub [2FA second announcement]

https://en.wikipedia.org/wiki/GitHub
https://github.blog/2022-05-04-software-security-starts-with-the-developer-securing-developer-accounts-with-2fa/
https://github.blog/2022-12-14-raising-the-bar-for-software-security-next-steps-for-github-com-2fa/

Creating a new GitHub repository

1. In the top-right corner of any page, use the “+” drop-down
menu, and select “New repository”

2. Type a short name for the new repository (e.g. “first-repo”)

3. Choose the repository visibility: “Public” or “Private”

4. Review the creation options

5. Click “Create repository”

After creating a new GitHub repository, it can be added as a remote
to a local git repository.
(e.g. “git remote add <remote name> <new github repo url>”)

GitHub [Create a repo]

https://docs.github.com/en/get-started/quickstart/create-a-repo

Adding collaborators to a GitHub repository

1. Navigate to the main page of the desired repository

2. Under the repository name, click “Settings”

3. In the “Access” section of the sidebar, click “Collaborators”

4. Click “Add people”

5. Use the search field to search and select a GitHub user

6. Click “Add <user name> to <repo name>”

7. The selected user will receive an invite email to the repository
(once they accept the invitation, they will have collaborator
access to the repository)

GitHub [Inviting collaborators to a personal repository]

https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-access-to-your-personal-repositories/inviting-collaborators-to-a-personal-repository

Forking a GitHub repository

A fork is a copy of an existing GitHub repository that shares code
and visibility settings with the original GitHub upstream repository
(also called “parent repository”).

1. Navigate to the existing repository to be forked

2. In the top-right corner of the page, click “Fork”

3. Review the forking options

4. Click “Create fork”

GitHub [Fork a repo]

https://docs.github.com/en/get-started/quickstart/fork-a-repo

Creating a GitHub pull request

A pull request (or PR) is a way to ask a GitHub upstream repository
to integrate changes pushed to a GitHub repository that is a fork of
the main one.

Once a pull request is opened, maintainers can discuss and review
the changes with collaborators and add follow-up commits before
the changes are merged into the main GitHub repository.

GitHub [About pull requests]

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests

Creating a GitHub pull request

1. Navigate to the main page of the desired repository fork

2. In the “Branch” menu, choose the branch that contains the
commits to be integrated upstream

3. Click “Compare & pull request” in the yellow banner (above
the list of files) to create a PR for the current branch

4. Review the “base branch” and the “compare branch” (the
former represent the destination, the latter is the source for
the PR)

5. In the “Title” field, type a meaningful title for the pull request

6. In the description body field, explain why the upstream
maintainer should accept the pull request

7. Click “Create Pull Request” to create a pull request ready for
review (or use the drop-down and click “Create Draft Pull
Request” to create a draft pull request)

GitHub [Creating a pull request]

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request

Git merge conflicts

Merge conflicts happen when merging branches have competing
commits, and Git needs human intervention to decide which changes
to incorporate in the final merge.

When the changes are on different files (or different lines of the same
file), Git can merge them automatically. Usually, merge conflicts
happen when different changes are made to the same line of the
same file, or when the same file is edited on a branch and deleted
on the other merging branch.

All merge conflicts must be resolved before merging a pull request on
GitHub. If there is a merge conflict between the “compare branch”
and “base branch”, the conflicting files are listed above the “Merge
pull request” button (which will be also deactivated until all conflicts
are resolved).

GitHub [About merge conflicts]

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/about-merge-conflicts

Git merge conflicts resolution

1. Print the list of conflicting files using “git status”

2. For each file containing conflicts

2.1 Open the file with a text editor

2.2 Search for the “conflict markers” (“<<<<<<< HEAD”, followed
by the changes from the destination branch, followed by
“=======”, followed by the changes from the source branch,
followed by “>>>>>>> <source branch name>”)

2.3 Decide what changes to keep (it is possible to incorporate
changes from both branches)

2.4 Delete the “conflict markers”

2.5 Stage resolved file for commit using “git add <file name>”

3. Commit the resolved files using “git commit”

GitHub [Resolving a merge conflict using the command line]

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-using-the-command-line

Git merge conflicts resolution example

user@host :~/ repo$ git merge feat -1

Auto -merging file1

CONFLICT (content): Merge conflict in file1

Automatic merge failed; fix conflicts and then commit the

result.

user@host :~/ repo$ git status

On branch master

You have unmerged paths.

(fix conflicts and run "git commit ")

(use "git merge --abort" to abort the merge)

Unmerged paths:

(use "git add <file >..." to mark resolution)

both modified: file1

no changes added to commit (use "git add" and/or "git commit

-a")

Git merge conflicts resolution example

user@host :~/ repo$ cat file1

<<<<<<< HEAD

ggg

=======

vvv

>>>>>>> feat -1

Use a text editor to resolve the conflicts

user@host :~/ repo$ cat file1

I decided to write something else ... and this is fine

user@host :~/ repo$ git add file1

user@host :~/ repo$ git commit -m "Resolve merge conflicts"

Creating a GitHub issue

GitHub allows users to create and manage issues to track ideas,
feedback, tasks, or bugs.

1. Navigate to the main page of the desired repository

2. Under the repository name, click “Issues”

3. Click “New issue”

4. In the “Title” field, type a meaningful title for the issue

5. In the comment body field, type a description of the issue

6. Review the other options

7. Click “Submit new issue”

GitHub [About issues]

GitHub [Creating an issue]

https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://docs.github.com/en/issues/tracking-your-work-with-issues/creating-an-issue

Extra - Creating a GitHub gist

A gist is a special type of GitHub repository intended to provide
a simple way to share code snippets with others (like a pastebin
service).

1. In the top-right corner of any page, use the “+” drop-down
menu, and select “New gist”

2. In the “Filename including extension” field, type a file name
for the gist (including the file extensions)

3. In the file contents field, type the text of the gist

4. Click “Create secret Gist” or “Create public gist”
(note: secret gists are not private, i.e. anyone who has the
gist’s url can access them)

GitHub [Creating gists]

https://docs.github.com/en/get-started/writing-on-github/editing-and-sharing-content-with-gists/creating-gists

Extra - GitHub Pages

GitHub Pages is a static web hosting services offered by GitHub that
can be used to serve websites.

It takes HTML, CSS, and JavaScript files straight from a repository
and serves them using a “github.io” subdomain.

GitHub Pages can be integrated with Jekyll (https://jekyllrb.com)
to generate the website from plain text files.

GitHub [About GitHub Pages]

https://jekyllrb.com
https://docs.github.com/en/pages/getting-started-with-github-pages/about-github-pages

What is a license file

A license (or software license) is a legal document governing the use
or redistribution of software.

Usually the license is a text file that resides in the root directory of
a project (e.g. “LICENSE”, “LICENSE.txt”, ...).

When you own the source code of a software, you can choose the
license type that best suits your needs.

Wikipedia [Software license]

GitHub [Licensing a repository]

Choose-a-license website

https://en.wikipedia.org/wiki/Software_license
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository
https://choosealicense.com/

What is a readme file

A readme file (or README) is a text file that resides in the root
directory of a project, containing the following information:

▶ the purpose of the project

▶ instructions on how to build/install the project

▶ guidance on how to use the project

▶ how to contribute to the project

By ensuring that the readme file is comprehensive, developers can
better collaborate and maintain the project.

Medium [Why having a Readme]

GitHub [About READMEs]

https://wengerk.medium.com/why-having-a-readme-on-your-internal-project-is-essential-c85cb9dd8e65
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-readmes

Formatting a readme file

Since a readme file is just a text file, it does not allow any special
formatting by itself.

However, GitHub can render readme files (and in general all text
files) when they are written using the Markdown syntax, and have
the “.md” extension (e.g. “README.md”).

It is also important to note that GitHub offers an extended version
of the basic Markdown syntax, and you can use it when writing
readmes, comments and issues.

Markdown Guide

GitHub [Basic writing and formatting syntax]

https://www.markdownguide.org/
https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax

Markdown cheat-sheet

Heading
Biggest Header

...

Smallest Header

Bold **bold text**

Italic *italicized text*

Blockquote > quoted text

Unordered list
- item 1

- item 2

Ordered list
1. item 1

2. item 2

Link [link title](https://github.com)

Inline code `code`

Multiline code

```
code

more code

```

Table
| col 1 hdr | col 2 hdr |

| --- | --- |

| some text | other text |

Markdown Guide [Cheat Sheet]

https://www.markdownguide.org/cheat-sheet/

GitHub Markdown cheat-sheet

Mentioning people
or teams

@username

@organization/team name

Referencing issues
or pull requests

#issue or pr number

username/repo name#issue or pr number

organization/repo name#issue or pr number

Referencing commits

commit sha

username@commit sha

username/repo name@commit sha

organization/repo name@commit sha

GitHub [Basic writing and formatting syntax]

GitHub [Autolinked references and URLs]

https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax
https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/autolinked-references-and-urls

GitHub command line tool

GitHub offers a command line tool called “GitHub CLI” (or simply
“gh”) that allows to manage the majority of aspects related to a
GitHub account (i.e. managing repositories, forks, pull requests,
issues, ...).

GitHub CLI is free, open-source and multiplatform (available for
Windows, Mac, Linux).

Installation instructions are available on its official GitHub repository
page (https://github.com/cli/cli).

GitHub CLI

GitHub CLI [Manual]

https://github.com/cli/cli
https://cli.github.com/
https://cli.github.com/manual/

GitHub CLI – Authentication

GitHub CLI needs to be authorized before executing operations on
the desired GitHub account.

To authenticate with the GitHub website you can use “gh auth

login”.

This command will open a web browser to complete the login process
(to see the authentication status you can use “gh auth status”).

After finishing the login process, you can check the information
about your GitHub profile with “gh status”.

GitHub CLI [Authentication]

GitHub CLI [Status]

https://cli.github.com/manual/gh_auth
https://cli.github.com/manual/gh_status

GitHub CLI – Repositories

To create a GitHub repository you can use “gh repo create”.

To list your GitHub repositories you can use “gh repo list”.

To delete a GitHub repository you can use “gh repo delete

<repo name>”. Omitting “repo name”, will delete the repository
pointed by the current directory.

To fork a GitHub repository you can use “gh repo fork

<owner/repo name>”. Omitting “repo name”, will create a fork
of the repository pointed by the current directory. Moreover, the
new fork will be set as the “origin” remote and any existing origin
remote will be renamed to “upstream”.

GitHub CLI [Repositories]

https://cli.github.com/manual/gh_repo

GitHub CLI – Pull requests

To create a GitHub pull request you can use “gh pr create”. This
command will use the current branch as “compare branch” and the
current GitHub repository default branch as “base branch”.

To list the pull requests in the current GitHub repository you can
use “gh pr list”.

To show the status of the pull requests in the current GitHub repos-
itory you can use “gh pr status”.

GitHub CLI [Pull requests]

https://cli.github.com/manual/gh_pr

GitHub CLI – Issues

To create a GitHub issue you can use “gh issue create”.

To list the issue in the current GitHub repository you can use
“gh issue list”.

To close a GitHub issue you can use “gh issue close

<issue number or url>”.

To delete a GitHub issue you can use “gh issue delete

<issue number or url>”.

GitHub CLI [Issues]

https://cli.github.com/manual/gh_issue

Questions?

Thank you

