
Introduction to Version Control Systems 1

DATA 4010 Seminar – Fall 2023

Stefano Ansaloni

University of Manitoba

September 18, 2023



About me

Stefano Ansaloni

Cloud Computing Specialist at University of Manitoba
(part of the HPC support team)

Software Developer and DevOps Specialist since 2017

Linux User/Admin since 2005



What is a version control system?

From Wikipedia (Version Control):

Version control (also known as revision control, source con-
trol, or source code management) is a class of systems
responsible for managing changes to computer programs,
documents, large web sites, or other collections of infor-
mation.

https://en.wikipedia.org/wiki/Version_control


History

Revision Control System (RCS)

▶ First release in 1982

▶ Latest stable release in 2022

▶ Operates only on single files

▶ Only one user can work on a file at a time

▶ No network support

Wikipedia [Revision Control System]

https://en.wikipedia.org/wiki/Revision_Control_System


History

Concurrent Versions System (CVS)

▶ First release in 1990

▶ Latest stable release in 2008

▶ Based on RCS (front-end to RCS)

▶ Repository-level change tracking

▶ Client-server model

Wikipedia [Concurrent Versions System]

https://en.wikipedia.org/wiki/Concurrent_Versions_System


History

Subversion (SVN)

▶ First release in 2000

▶ Latest stable release in 2022

▶ Commits as true atomic operations

▶ Repository-level change tracking

▶ Path-based authorization

Wikipedia [Apache Subversion]

https://en.wikipedia.org/wiki/Apache_Subversion


History

Git

▶ First release in 2005

▶ Latest stable release in 2023

▶ Distributed approach

▶ Non-linear workflows

▶ Safeguards against corruption (accidental or malicious)

Wikipedia [Git]

https://en.wikipedia.org/wiki/Git


Distributed VS Centralized

Distributed VCS Centralized VCS

peer-to-peer approach client-server approach

users can work offline
users need access to
the central server

local copies can function
as remote backups

central server is a
single point of failure

complete codebase
(including full history)

mirrored locally

only requested revision
mirrored locally

slower initial checkout faster initial checkout

more storage required less storage required

Wikipedia [Distributed revision control]

https://en.wikipedia.org/wiki/Distributed_revision_control


Workflow examples

Centralized Workflow

One central hub (or repository) can accept code, and everyone
synchronizes their work with it.

The repository is usually accessed through a network connection to
ease the code sharing among the developers.

If two developers clone from the hub and both make changes, the
first to push the changes to the repository can do so with no
problems.

The second developer must merge in the first one’s work before
pushing the local changes.

Pro Git book [5.1 Distributed Git - Distributed Workflows]

https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows


Workflow examples
Centralized Workflow



Workflow examples

Integration-Manager Workflow

The project maintainer creates the official repository.

Developers create public clones of the official repository, and start
adding changes.

When a developer is done, sends a pull-request to the project
maintainer.

The maintainer reviews the changes and decides whether to merge
them or not into the official repository.

Pro Git book [5.1 Distributed Git - Distributed Workflows]

https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows


Workflow examples
Integration-Manager Workflow



Workflow examples

Dictator and Lieutenants Workflow

This is a variant of the Integration-Manager workflow, where a
second level of “integration-managers” is added.

This workflow is usually adopted for huge projects with hundreds
(or thousands) of collaborators.

Pro Git book [5.1 Distributed Git - Distributed Workflows]

https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows


Workflow examples
Dictator and Lieutenants Workflow



What is a repository?

A repository is a data structure that stores metadata for a set of
files or directory structure.

The main purpose of a repository is to store information about a
set of files, as well as the history of changes made to those files.

In the case of Git, the whole set of information is duplicated on
every user’s system.

Wikipedia [Repository]

https://en.wikipedia.org/wiki/Repository_(version_control)


What is a working copy?

The working copy (or working tree) is the local copy of files from a
repository, at a specific time or revision.

All work done to the files in a repository is initially done on a
working copy, and for this reason it could be seen as a sandbox.

Wikipedia [Version control system - Working copy]

https://en.wikipedia.org/wiki/Version_control_system#Working_copy


What is a commit?

A commit (or revision) is a set of alterations packaged together,
along with meta information about those alterations.

It describes the exact differences between two successive versions
in the version control system’s repository of changes.

Commits are typically treated as an atomic unit.

Wikipedia [Changeset]

https://en.wikipedia.org/wiki/Changeset


What is a commit operation?

A commit operation is an action which saves the changes made on
the working copy to the repository, creating a new revision of the
repository.

Wikipedia [Commit]

https://en.wikipedia.org/wiki/Commit_(revision_control)


What is a tag?

A tag is a textual label that can be associated with a specific
commit.

This allows to define a meaningful name to be given to a particular
state of the project.

Wikipedia [Revision tag]

https://en.wikipedia.org/wiki/Revision_tag


What is a branch?

A branch is a duplicated set of files that allows the two copies of
those files to be independently developed at different speeds, or in
different ways.

Wikipedia [Branching (version control)]

https://en.wikipedia.org/wiki/Branching_(revision_control)


What is a merge operation?

A merge operation (or merging) is the action of reconciling
multiple changes made to a set of files.

Usually, this is necessary when one or more files are modified on
two independent branches.

The result is a single collection of files that contains both sets of
changes.

Wikipedia [Merge (version control)]

https://en.wikipedia.org/wiki/Merge_(revision_control)


Git – What is a remote?

A remote (or remote repository) is a copy of a local repository
hosted on the Internet or network somewhere.

Remote repositories are used to ease the collaboration between
multiple developers by pushing and pulling data to and from them
when they need to share work.

Pro Git book [2.5 Git Basics - Working with Remotes]

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes


Git – What is the staging area?

The staging area is a place to record files before committing them.

All (and only) files inside the staging area will be taken into
account when creating a commit.

Pro Git book [2.2 Git Basics - Recording Changes]

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository


Git – What is a branch? (again)

Two possible definitions:

1. a name for a particular commit and all the commits that are
ancestors of it

2. a line of development (or better: a directed acyclic graph
(DAG) of development, where the commits represent the
graph’s nodes)

A branch can be local (if it exists in a local repository), remote (if
it exists on a configured remote), or both.

Mark’s Blog [Git: fetch and merge, don’t pull]

http://longair.net/blog/2009/04/16/git-fetch-and-merge


Git – What is a tag? (again)

A tag is a reference that points to a specific commit.

The pointed commit never changes (no further history of commits).

A tag is like a branch that does not change.

Bitbucket [Git tag]

https://www.atlassian.com/git/tutorials/inspecting-a-repository/git-tag


Git branch examples

A B C D

E F G

origin/master

tag-1

tag-2 master

HEAD

origin/feat-1 feat-1

A B

C D

E master

feat-1



Creating a Git repository

To create a new local Git repository, move to the desired directory
and execute “git init” (this will create an empty Git repository
in the current directory).

If you want to create a local copy of a remote repository, you can
use “git clone <remote url> [<local dir>]”.

Pro Git book [2.1 Git Basics - Getting a Git Repository]

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes


Checking the status of a Git repository

To determine which files are in which state within a Git repository,
you can use “git status”.

user@host :~/ repo$ git status

On branch master

No commits yet

nothing to commit (create/copy files and use

"git add" to track)

Pro Git book [2.2 Git Basics - Recording Changes]

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository


Adding files to a Git repository

By default Git does not keep track of newly added files.

user@host :~/ repo$ touch file1

user@host :~/ repo$ git status

On branch master

No commits yet

Untracked files:

(use "git add <file >..." to include in what will be

committed)

file1

nothing added to commit but untracked files present

(use "git add" to track)

Pro Git book [2.2 Git Basics - Recording Changes]

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository


Adding files to a Git repository

To add a new file to a Git repository you can use
“git add <filename or directory>”.

user@host :~/ repo$ git add file1

user@host :~/ repo$ git status

On branch master

No commits yet

Changes to be committed:

(use "git rm --cached <file >..." to unstage)

new file: file1

Pro Git book [2.2 Git Basics - Recording Changes]

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository


Adding commits to a Git repository

To add a new commit to a Git repository, the staging area must
not be empty, then you can use “git commit” to commit the
changes.

user@host :~/ repo$ git commit -m "Initial commit"

[master (root -commit) 99 fca70] First commit

1 file changed , 0 insertions (+), 0 deletions(-)

create mode 100644 file1

user@host :~/ repo$ git status

On branch master

nothing to commit , working tree clean

Pro Git book [2.2 Git Basics - Recording Changes]

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository


Viewing commits history of a Git repository

To show the history of a repository, you can use “git log”.

user@host :~/ repo$ git log

commit 99 fca709626fc96ac1c2f744f5f3b25feaf542c6 (HEAD

-> master)

Author: Name Here <email_here@example.org >

Date: Sun Jan 1 00:00:00 2023 -0500

First commit

Pro Git book [2.3 Git Basics - Viewing the Commit History]

https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History


Unstaging files in a Git repository

If you mistakenly added a file to the staging area, you can remove
it using “git reset <filename>”, or “git restore

--staged <filename>”.

user@host :~/ repo$ git status

On branch master

Changes to be committed:

(use "git restore --staged <file >..." to unstage)

modified: file1

new file: file2

user@host :~/ repo$ git reset file1

Unstaged changes after reset:

M file1

Pro Git book [2.4 Git Basics - Undoing Things]

https://git-scm.com/book/en/v2/Git-Basics-Undoing-Things


Restoring files in a Git repository

To restore a file to a previous commit, you can use
“git checkout <ref> -- <filename>”, or
“git restore -s <ref> <filename>”.

user@host :~/ repo$ git log --oneline

546 bb0c (HEAD -> master) Second commit

99 fca70 First commit

user@host :~/ repo$ git checkout 99 fca70 -- file1

user@host :~/ repo$ git status

On branch master

Changes to be committed:

(use "git restore --staged <file >..." to unstage)

modified: file1

user@host :~/ repo$ git restore --staged file1

user@host :~/ repo$ git restore file1

Pro Git book [2.4 Git Basics - Undoing Things]

https://git-scm.com/book/en/v2/Git-Basics-Undoing-Things


Managing branches in a Git repository
To list, create, or delete branches you can use “git branch”.

To switch branch you can use “git checkout <branch name>”,
or “git switch <branch name>”.

user@host :~/ repo$ git branch

* master

user@host :~/ repo$ git branch new -branch

user@host :~/ repo$ git branch

* master

new -branch

user@host :~/ repo$ git switch new -branch

Switched to branch ’new -branch ’

user@host :~/ repo$ git branch

master

* new -branch

user@host :~/ repo$ git switch master

user@host :~/ repo$ git branch -d new -branch

Deleted branch new -branch (was 99 fca70).

Pro Git book [3.1 Git Branching - Branches in a Nutshell]

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell


Merging branches in a Git repository
To merge two branches, you can use
“git merge <src branch name>”.

user@host :~/ repo$ git switch -c fix

Switched to a new branch ’fix ’

user@host :~/ repo$ touch file2

user@host :~/ repo$ git add file2

user@host :~/ repo$ git commit -am "Important fix"

[fix c87f330] Important fix

1 file changed , 0 insertions (+), 0 deletions(-)

create mode 100644 file2

user@host :~/ repo$ git switch master

Switched to branch ’master ’

user@host :~/ repo$ git merge fix

Updating 546 bb0c.. c87f330

Fast -forward

file2 | 0

1 file changed , 0 insertions (+), 0 deletions(-)

create mode 100644 file2

Pro Git book [3.2 Git Branching - Basic Branching]

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging


Managing remotes in a Git repository

To list, create, or delete remotes you can use “git remote”.

Usually Git commands use “origin” as default remote name when
no specific configuration is present.

user@host :~/ repo$ git remote

user@host :~/ repo$ git remote add src -git https ://

github.com/git/git.git

user@host :~/ repo$ git remote

src -git

user@host :~/ repo$ git fetch src -git

...

user@host :~/ repo$ git branch -r

src -git/master

src -git/next

src -git/todo

...

user@host :~/ repo$ git remote remove src -git

Pro Git book [2.5 Git Basics - Working with Remotes]

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes


Synchronizing changes from/to a remote in a Git repository
To download changes from a remote, you can use
“git fetch <remote name>” (a “git merge” is needed to
update the local branch).

To upload changes to a remote, you can use
“git push <remote name> <branch name>”.

user@host :~/ repo$ git fetch src -git

remote: Enumerating objects: 354353 , done.

remote: Counting objects: 100% (913/913) , done.

remote: Compressing objects: 100% (913/913) , done.

remote: Total 354347 (delta 0) <...>

Receiving objects: 100% (354347/354347) <...>

Resolving deltas: 100% (266375/266375) , done.

From https :// github.com/git/git

* [new branch] master -> src -git/master

* [new branch] next -> src -git/next

* [new branch] todo -> src -git/todo

* [new tag] v2 .42.0 -> v2 .42.0

...

Pro Git book [2.5 Git Basics - Working with Remotes]

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes


Synchronizing changes from/to a remote in a Git repository

If the current branch is set up to track a remote branch, you can
use “git pull” to automatically fetch and then merge that
remote branch into the current branch.

Using “git pull” generally fetches data from the originally
cloned server and automatically tries to merge it into the code
you’re currently working on.

Pro Git book [2.5 Git Basics - Working with Remotes]

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes


Git cheat-sheet



Git GUI clients

Free, open-source, multiplatform (Windows, Mac, Linux):

▶ MeGit – https://github.com/eclipsesource/megit

▶ Gitnuro – https://github.com/JetpackDuba/Gitnuro

▶ Gittyup – https://github.com/Murmele/Gittyup

Free, closed-source, multiplatform (Windows, Mac):

▶ Sourcetree – https://www.sourcetreeapp.com/

Note: remember that the only real client is the “git” command line tool.

Git [GUIS]

https://github.com/eclipsesource/megit
https://github.com/eclipsesource/megit
https://github.com/JetpackDuba/Gitnuro
https://github.com/JetpackDuba/Gitnuro
https://github.com/Murmele/Gittyup
https://github.com/Murmele/Gittyup
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/
https://git-scm.com/downloads/guis


Useful links

▶ Official Git documentation: https://git-scm.com/doc

▶ “Pro Git” book (free): https://git-scm.com/book

https://git-scm.com/doc
https://git-scm.com/doc
https://git-scm.com/book
https://git-scm.com/book


XKCD [1597]

https://xkcd.com/1597


Questions?



Thank you


