Using HPC systems for
Python-based Al/ML tasks

UM Fall HPC/Cloud Workshop
Grigory Shamov, October 16, 2025

N
b\ Universi

ty
@ oManitoba

Why the talk is about Python AI/ML on HPC?

e Everyone (almost) is using Python for Al / ML

e HPC has high performance hardware and software

NVIDIA (and AMD) GPUs
High bandwidth, Low-latency Interconnect (NVidia Infiniband)
Scalable, parallel File Systems (VAST, CEPH, DDN Infinia) or local SSD NVMe
e HPC community has a data centre infrastructure
o Power; high efficiency cooling
. Many Al shops do use same HPC technology
° SLURM, Linux, etc.

o Some do use Kubernetes and containerized workflows

N
5\ University
1@ oManitoba

umanitoba.ca

This talk is about using our HPC infra

e HPC presents a few issues for running Al workflows:
o How to maintain the (largely Python-based) software on HPC?
m Need to be able to get software and Al Models running

o Good to have some ability to interactive workflows for debugging
o How to adapt it to the SLURM based, batch workflow
m Need to match HPC resources with Al workflow efficiently

e SaaS competition! (Google Colab, for example).

N
5\ University
umanitoba.ca @ oManitoba

4

f AT

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://dl.acm.org/doi/10.5555/3295222.3295349
https://blogs.nvidia.com/blog/what-are-foundation-models/

What are those Al and “models”

Layers of numerical weights, and metadata about them
e Specific to the model’s software and hardware (precision)
o (“transformers” would have attention layer, etc.)

.003 |-0.12 | 025 | .08

-0.05 | 0.14 | -0.09 | 0.02

17 -031 | 0.1 0.06

0.
-0.10 | 0.04 | 0.0 -0.22 O O O

e Training/tuning optimizes the weights of all or some layers
Inference converts a prompt into a numerical representation , passes through
model layers and generates outputs

https://poloclub.github.io/transformer-explainer/ \\

% University

umanitoba.ca o«Manitoba

https://poloclub.github.io/transformer-explainer/

Working with Al software and “models”

e Python packages : matrix math and optimization (torch, arrow, JAX, ...), ML models
(transformers, diffusers, ...) , training (accelerate, LoRa, etc.)
o Need to manage software dependencies (modules, pip, virtualenv)
o Must use optimized libraries from the host (CUDA, MPI, BLAS/LAPACK,
Arrow) — modules
o Common tools like conda are often unwelcome in HPC
e The Al Models themselves (layers, weights) need to be obtained

e A popular community hub Huggingface : https://huggingface.co/
e https://docs.alliancecan.ca/wiki/Huggingface

N
5\ University
umanitoba.ca @ oManitoba

https://huggingface.co/
https://docs.alliancecan.ca/wiki/Huggingface

Typical tasks for Al / ML on HPC

Training new models : optimize the weights
e Tuning existing models on additional datasets (LoRA, etc., but more
economical: selected layers)
e Inference: getting predictions/generalizations out of existing models
o Tokenize the “prompt”,
o Feed it through the layers
o Convert the representation back to the “output”

e For this Session we will try three examples: Interactive inference for text, text
to graphics and tuning/training a graphic model in a batch job.
e Using Grex (mainly) or Magic Castle: need GPUSs!

D
5\ University
umanitoba.ca @ oManitoba

Managing Python dependencies with pip

e Dependencies: Pip handles (mostly) Python dependencies, relying on OS for non-Python ones
a. Unlike conda, uv etc, that would package all binary dependencies as well.
b. HPC folks like to provide their own optimized binary software : load “modules”!
e Repositories: pip fetches packages from https://pypi.org/ or a local repository.
a. On CCEnv, each and every package must be repackaged to their “wheelhouse”.
b. Onlocal software stack SBEnv, manylinux wheels can be used from pypi.org
e |[nstallation destination: in particular when invoked in a Jupyter notebook cell.
a. user’s home directory SHOME/.local/{bin,lib,share} . (Grex)
b. Throw-away virtual environment under $SLURM_TMPDIR (Alliance HPC , MagicCastle)

c. Explicit virtualenv (create, activate and install) : best method. Needs a Jupyter kernel added.

N
Ea University

umanitoba.ca o«Manitoba

1. Project one: text generation using Qwen3

® We will generate text based on a prompt, with reasoning using a small LLM

o https://hugaingface.co/Qwen/Qwen3-0.6B

e The code has three general stages
1. Butfirst, use pip to install packages in Jupyter.
1.1. Don'’t forget to load Lmod modules (Lmod tab) !
1.2. Monitoring tab for Node and GPU resources.
Import Python packages and see if they load
Set up encoders for the prompt
Run the inference/generation step
Decode the output, print result
° Can be made into a chatbot with tools like Gradio.

SGEENEARN

N
% University

umanitoba.ca o«Manitoba

https://huggingface.co/Qwen/Qwen3-0.6B

2. Project two: inference using SD-1.5

e \We will generate images based on a text prompt
e htips://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5

o (used to be runwayml/stable-diffusion-v1-5)
o Will use torch, transformers and diffusers
o Needs a GPU! On Grex or MagicCastle
o Will use HuggingFace convenient “pipe” interface that lets us set a pretrained
model and abstract the encoding, decoding steps.
e Let us use same pip environment in Jupyter as for the project 1.

umanitoba.ca o«Manitoba

N
Ea University

https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5

3. Project 3: using LoRa to train SD-1.5

e The SD-1.5 model is unaware of certain things. | want to add
some knowledge to it: an ElderScrolls game character, Scamp

O

O

O

O

https://en.uesp.net/wiki/Lore:Scamp
Will use a handful of images from the fandom wiki (dataset 2)

Will use a handful of auto generated images from ChatGPT 4o.
(dataset 1)

e Low Rank Adaptation of Large Language Models (LoRa)
technique

@]

O

Only adding a few layers, freezing the rest of the model
https://huggingface.co/docs/diffusers/en/training/lora

umanitoba.ca

unet_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v",
"to_out.0"],

)

unet.add_adapter(unet_lora_config)
lora_layers = filter(lambda p:
p.requires_grad, unet.parameters())

oManitoba

N
Ea University

https://en.uesp.net/wiki/Lore:Scamp
https://huggingface.co/docs/diffusers/en/training/lora

3. Project 3: using LoRa to train SD-1.5

e Using Huggingface “accelerate” training script from “diffusers” repo

O

0O O O O

@)

Get an interactive job on a GPU node
Git clone the repo TBD
Create a virtualenv (SBEnv on Grex, CCEnv on Jupyter)
Install pip packages, including current versions of diffusers from git
Download / copy the training data
m Dataset 1 and dataset 2 with “Scamps”.
Run a salloc training job, obtaining new LoRa weights.
Validate the model, repeat etc.

N

University

umanitoba.ca @ o«Manitoba

3. Project 3: using LoRa to train SD-1.5

e Using Jupyter, repeat the exercise 2 but use generation with new layers added.
o Will use HuggingFace convenient “pipe” interface that lets us set a
pretrained model and abstract the encoding, decoding steps.
o Let us use same pip environment in Jupyter as for the project 2.
o The only change is to add our new extra layers to the model.
o Try to generate an image about a “Scamp”.

umanitoba.ca o«Manitoba

N
Ea University

Strategies for larger Al Model training

Large datasets, take a lot of time on a single GPU
Large models would not fit into memory of a single GPU
e Distributed parallel training frameworks: .
o Huggingface accelerate ,
o Microsoft DeepSpeed ,
o etc,
e Data parallelism (split the data across GPUs)
e Pipeline parallelism (distribute model layers)
e Tensor parallelism (domain decomposition)

May rely on collective MPI operations (AllIReduce, AllGather etc,)

N
Ea University

umanitoba.ca o«Manitoba

DRI (Digital Research Infrastructure) for Al

IN MANY WAYS, Al VINDICATES THE “HPC WAY"

Al needs fast interconnects. We had them, the cloud and the enterprise did nof.
» Microsoft deployed 40,000 KM of Infiniband, in 2023, built for the HPC market ~1999,

Al needs message passing. MPI, the message passing interface, was built Open Source in the
HPC community, ~1993

» Now the standard library for transformer-based generative Al (e.g. ChatGPT, DeepSpeed, OpenAl etc.).

Al needs heterogenerfy GPUs forgeneroﬂ purpose computing — the hardware building block for
Al - came out of the HPC world PGPU" ~2004).

Al needs fast, large scale filesystems - not object stores

Al needs liquid cooling — even 5 years ago, many datacenter providers were convinced they
could just use air, now none are. HPC systems switched to liquid cooling a long time ago.

This means Al needs HPC hardware (probably good) and HPC programmers (good if you are one,

bad if you need to hire one).

A slide by Dan Stazione, Director of TACC

tamlA, a real Al supercomputer of LavalU

Digital Research

[} u ?)
Which system for which workload~ Alliance of Canada
System, kind # GPU GPUs per node layout | Interconnect Storage,
(2025) nodes PB
TamlA , HPC (Laval) 42 (H100) 4 x NVIDIA HGX H100 SXM 4 x HDR200 Infiniband, ?
non-blocking
Vulcan, HPC (UofA) 205 (L40s) 4 x NVIDIA L40s 1x100Gbps Ethernet 5PB
Killarney, HPC (UofT) 168 (L40s) 4 x NVIDIA L40s, 1x HDR100, 1.5PB
10(H100) 8 x NVIDIA H100 SXM 2x HDR200

HPC systems ?

Fir, HPC 160 4 x NVidia H100 SXM 1x HDR200 Infiniband, blocking 51PB

Nibi, HPC 36 8 x Nvidia H100 SXM 1x Nokia 200/400G Ethernet 25PB

Trillium, HPC 60 4 x NVidia H100 SXM 1x NDR200/ NDR400 Infiniband 29PB

N

%

University
o« Manitoba

