Using HPC systems for
Python-based Al/ML tasks

UM Fall HPC/Cloud Workshop
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Why the talk is about Python AI/ML on HPC?

e Everyone (almost) is using Python for Al / ML

e HPC has high performance hardware and software

NVIDIA (and AMD) GPUs
High bandwidth, Low-latency Interconnect (NVidia Infiniband)
Scalable, parallel File Systems (VAST, CEPH, DDN Infinia) or local SSD NVMe
e HPC community has a data centre infrastructure
o Power; high efficiency cooling
. Many Al shops do use same HPC technology
° SLURM, Linux, etc.

o Some do use Kubernetes and containerized workflows
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This talk is about using our HPC infra

e HPC presents a few issues for running Al workflows:
o How to maintain the (largely Python-based) software on HPC?
m Need to be able to get software and Al Models running

o Good to have some ability to interactive workflows for debugging
o How to adapt it to the SLURM based, batch workflow
m Need to match HPC resources with Al workflow efficiently

e SaaS competition! (Google Colab, for example).
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https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://dl.acm.org/doi/10.5555/3295222.3295349
https://blogs.nvidia.com/blog/what-are-foundation-models/

What are those Al and “models”

Layers of numerical weights, and metadata about them
e Specific to the model’s software and hardware (precision)
o (“transformers” would have attention layer, etc.)
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e Training/tuning optimizes the weights of all or some layers
Inference converts a prompt into a numerical representation , passes through
model layers and generates outputs

https://poloclub.github.io/transformer-explainer/ \\
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https://poloclub.github.io/transformer-explainer/

Working with Al software and “models”

e Python packages : matrix math and optimization (torch, arrow, JAX, ...), ML models
(transformers, diffusers, ...) , training (accelerate, LoRa, etc.)
o Need to manage software dependencies (modules, pip, virtualenv)
o Must use optimized libraries from the host (CUDA, MPI, BLAS/LAPACK,
Arrow) — modules
o Common tools like conda are often unwelcome in HPC
e The Al Models themselves (layers, weights) need to be obtained

e A popular community hub Huggingface : https://huggingface.co/
e https://docs.alliancecan.ca/wiki/Huggingface
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https://huggingface.co/
https://docs.alliancecan.ca/wiki/Huggingface

Typical tasks for Al / ML on HPC

Training new models : optimize the weights
e Tuning existing models on additional datasets (LoRA, etc., but more
economical: selected layers)
e Inference: getting predictions/generalizations out of existing models
o Tokenize the “prompt”,
o Feed it through the layers
o Convert the representation back to the “output”

e For this Session we will try three examples: Interactive inference for text, text
to graphics and tuning/training a graphic model in a batch job.
e Using Grex (mainly) or Magic Castle: need GPUSs!
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Managing Python dependencies with pip

e Dependencies: Pip handles (mostly) Python dependencies, relying on OS for non-Python ones
a. Unlike conda, uv etc, that would package all binary dependencies as well.
b. HPC folks like to provide their own optimized binary software : load “modules”!
e  Repositories: pip fetches packages from https://pypi.org/ or a local repository.
a. On CCEnv, each and every package must be repackaged to their “wheelhouse”.
b.  Onlocal software stack SBEnv, manylinux wheels can be used from pypi.org
e |[nstallation destination: in particular when invoked in a Jupyter notebook cell.
a. user’s home directory SHOME/.local/{bin,lib,share} . (Grex)
b.  Throw-away virtual environment under $SLURM_TMPDIR (Alliance HPC , MagicCastle)

c.  Explicit virtualenv (create, activate and install) : best method. Needs a Jupyter kernel added.
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1. Project one: text generation using Qwen3

® We will generate text based on a prompt, with reasoning using a small LLM

o https://hugaingface.co/Qwen/Qwen3-0.6B

e The code has three general stages
1. Butfirst, use pip to install packages in Jupyter.
1.1. Don'’t forget to load Lmod modules ( Lmod tab) !
1.2. Monitoring tab for Node and GPU resources.
Import Python packages and see if they load
Set up encoders for the prompt
Run the inference/generation step
Decode the output, print result
° Can be made into a chatbot with tools like Gradio.

SGEENEARN
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https://huggingface.co/Qwen/Qwen3-0.6B

2. Project two: inference using SD-1.5

e \We will generate images based on a text prompt
e htips://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5

o (used to be runwayml/stable-diffusion-v1-5)
o  Will use torch, transformers and diffusers
o Needs a GPU! On Grex or MagicCastle
o  Will use HuggingFace convenient “pipe” interface that lets us set a pretrained
model and abstract the encoding, decoding steps.
e Let us use same pip environment in Jupyter as for the project 1.
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https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5

3. Project 3: using LoRa to train SD-1.5

e The SD-1.5 model is unaware of certain things. | want to add
some knowledge to it: an ElderScrolls game character, Scamp

O

O

O

O

https://en.uesp.net/wiki/Lore:Scamp
Will use a handful of images from the fandom wiki (dataset 2)

Will use a handful of auto generated images from ChatGPT 4o.
(dataset 1)

e Low Rank Adaptation of Large Language Models ( LoRa )
technique

@]
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Only adding a few layers, freezing the rest of the model
https://huggingface.co/docs/diffusers/en/training/lora

umanitoba.ca

unet_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v",
"to_out.0"],

)

unet.add_adapter(unet_lora_config)
lora_layers = filter(lambda p:
p.requires_grad, unet.parameters())
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https://en.uesp.net/wiki/Lore:Scamp
https://huggingface.co/docs/diffusers/en/training/lora

3. Project 3: using LoRa to train SD-1.5

e Using Huggingface “accelerate” training script from “diffusers” repo

O

0O O O O
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Get an interactive job on a GPU node
Git clone the repo TBD
Create a virtualenv (SBEnv on Grex, CCEnv on Jupyter)
Install pip packages, including current versions of diffusers from git
Download / copy the training data
m Dataset 1 and dataset 2 with “Scamps”.
Run a salloc training job, obtaining new LoRa weights.
Validate the model, repeat etc.
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3. Project 3: using LoRa to train SD-1.5

e Using Jupyter, repeat the exercise 2 but use generation with new layers added.
o  Will use HuggingFace convenient “pipe” interface that lets us set a
pretrained model and abstract the encoding, decoding steps.
o Let us use same pip environment in Jupyter as for the project 2.
o The only change is to add our new extra layers to the model.
o Try to generate an image about a “Scamp”.
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Strategies for larger Al Model training

Large datasets, take a lot of time on a single GPU
Large models would not fit into memory of a single GPU
e Distributed parallel training frameworks: .
o Huggingface accelerate ,
o Microsoft DeepSpeed ,
o etc,
e Data parallelism (split the data across GPUs)
e Pipeline parallelism (distribute model layers)
e Tensor parallelism (domain decomposition )

May rely on collective MPI operations (AllIReduce, AllGather etc,)
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DRI ( Digital Research Infrastructure ) for Al

IN MANY WAYS, Al VINDICATES THE “HPC WAY"

Al needs fast interconnects. We had them, the cloud and the enterprise did nof.
» Microsoft deployed 40,000 KM of Infiniband, in 2023, built for the HPC market ~1999,

Al needs message passing. MPI, the message passing interface, was built Open Source in the
HPC community, ~1993

» Now the standard library for transformer-based generative Al (e.g. ChatGPT, DeepSpeed, OpenAl etc.).

Al needs heterogenerfy GPUs forgeneroﬂ purpose computing — the hardware building block for
Al - came out of the HPC world PGPU" ~2004).

Al needs fast, large scale filesystems - not object stores

Al needs liquid cooling — even 5 years ago, many datacenter providers were convinced they
could just use air, now none are. HPC systems switched to liquid cooling a long time ago.

This means Al needs HPC hardware (probably good) and HPC programmers (good if you are one,

bad if you need to hire one).

A slide by Dan Stazione, Director of TACC

tamlA, a real Al supercomputer of LavalU




Digital Research

[} u ? )
Which system for which workload~ Alliance of Canada
System, kind # GPU GPUs per node layout | Interconnect Storage,
(2025) nodes PB
TamlA , HPC (Laval) 42 (H100) 4 x NVIDIA HGX H100 SXM 4 x HDR200 Infiniband, ?
non-blocking
Vulcan, HPC (UofA) 205 (L40s) 4 x NVIDIA L40s 1x100Gbps Ethernet 5PB
Killarney, HPC (UofT) 168 (L40s) 4 x NVIDIA L40s, 1x HDR100, 1.5PB
10(H100) 8 x NVIDIA H100 SXM 2x HDR200

HPC systems ?

Fir, HPC 160 4 x NVidia H100 SXM 1x HDR200 Infiniband, blocking 51PB

Nibi, HPC 36 8 x Nvidia H100 SXM 1x Nokia 200/400G Ethernet 25PB

Trillium, HPC 60 4 x NVidia H100 SXM 1x NDR200/ NDR400 Infiniband 29PB
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