Using HPC systems for Python-based AI/ML tasks

UM Fall HPC/Cloud Workshop Grigory Shamov, October 16, 2025

Why the talk is about Python AI/ML on HPC?

- Everyone (almost) is using Python for AI / ML
- HPC has high performance hardware and software

NVIDIA (and AMD) GPUs

High bandwidth, Low-latency Interconnect (NVidia Infiniband)

Scalable, parallel File Systems (VAST, CEPH, DDN Infinia) or local SSD NVMe

- HPC community has a data centre infrastructure
 - Power; high efficiency cooling
- Many Al shops do use same HPC technology
 - SLURM, Linux, etc.
 - Some do use Kubernetes and containerized workflows

This talk is about using our HPC infra

- HPC presents a few issues for running AI workflows:
 - How to maintain the (largely Python-based) software on HPC?
 - Need to be able to get software and Al Models running
 - Good to have some ability to interactive workflows for debugging
 - How to adapt it to the SLURM based, batch workflow
 - Need to match HPC resources with AI workflow efficiently
- SaaS competition! (Google Colab, for example).

What are those Al and "models"

- Layers of numerical weights, and metadata about them
- Specific to the model's software and hardware (precision)
 - ("transformers" would have attention layer, etc.)

.003	-0.12	0.25	.08							
-0.05	0.14	-0.09	0.02							
0.17	-0.31	0.11	0.06							
-0.10	0.04	0.0	-0.22							

- Training/tuning optimizes the weights of all or some layers
- **Inference** converts a prompt into a numerical representation , passes through model layers and generates outputs

https://poloclub.github.io/transformer-explainer/

Working with Al software and "models"

- Python packages: matrix math and optimization (*torch*, *arrow*, *JAX*, ...), ML models (*transformers*, *diffusers*, ...), training (*accelerate*, *LoRa*, etc.)
 - Need to manage software dependencies (modules, pip, virtualenv)
 - Must use optimized libraries from the host (CUDA, MPI, BLAS/LAPACK, Arrow) → modules
 - Common tools like conda are often unwelcome in HPC
- The Al Models themselves (layers, weights) need to be obtained
- A popular community hub Huggingface : https://huggingface.co/
- https://docs.alliancecan.ca/wiki/Huggingface

Typical tasks for AI / ML on HPC

- Training new models : optimize the weights
- Tuning existing models on additional datasets (LoRA, etc., but more economical: selected layers)
- Inference: getting predictions/generalizations out of existing models
 - Tokenize the "prompt",
 - Feed it through the layers
 - Convert the representation back to the "output"

- For this Session we will try three examples: Interactive inference for text, text to graphics and tuning/training a graphic model in a batch job.
- Using Grex (mainly) or Magic Castle: need GPUs!

Managing Python dependencies with pip

- Dependencies: Pip handles (mostly) Python dependencies, relying on OS for non-Python ones
 - a. Unlike conda, uv etc, that would package all binary dependencies as well.
 - b. HPC folks like to provide their own optimized binary software: load "modules"!
- Repositories: pip fetches packages from https://pypi.org/ or a local repository.
 - a. On CCEnv, each and every package must be repackaged to their "wheelhouse".
 - b. On local software stack SBEnv, manylinux wheels can be used from pypi.org
- Installation destination: in particular when invoked in a Jupyter notebook cell.
 - a. user's home directory \$HOME/.local/{bin,lib,share} . (Grex)
 - b. Throw-away virtual environment under \$SLURM_TMPDIR (Alliance HPC, MagicCastle)
 - c. Explicit virtualenv (create, activate and install): best method. Needs a Jupyter kernel added.

1. Project one: text generation using Qwen3

- We will generate text based on a prompt, with reasoning using a small LLM
- https://huggingface.co/Qwen/Qwen3-0.6B
- The code has three general stages
 - 1. But first, use pip to install packages in Jupyter.
 - 1.1. Don't forget to load Lmod modules (Lmod tab)!
 - 1.2. Monitoring tab for Node and GPU resources.
 - 2. Import Python packages and see if they load
 - 3. Set up encoders for the prompt
 - 4. Run the inference/generation step
 - 5. Decode the output, print result
- Can be made into a chatbot with tools like Gradio.

2. Project two: inference using SD-1.5

- We will generate images based on a text prompt
- https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
 - (used to be runwayml/stable-diffusion-v1-5)
 - Will use torch, transformers and diffusers
 - Needs a GPU! On Grex or MagicCastle
 - Will use HuggingFace convenient "pipe" interface that lets us set a pretrained model and abstract the encoding, decoding steps.
- Let us use same pip environment in Jupyter as for the project 1.

3. Project 3: using LoRa to train SD-1.5

- The SD-1.5 model is unaware of certain things. I want to add some knowledge to it: an ElderScrolls game character, Scamp
 - https://en.uesp.net/wiki/Lore:Scamp
 - Will use a handful of images from the fandom wiki (dataset 2)
 - Will use a handful of auto generated images from ChatGPT 4o.
 (dataset 1)

0

- Low Rank Adaptation of Large Language Models (LoRa) technique
 - Only adding a few layers, freezing the rest of the model
 - https://huggingface.co/docs/diffusers/en/training/lora

```
unet_lora_config = LoraConfig(
    r=args.rank,
    lora_alpha=args.rank,
    init_lora_weights="gaussian",
    target_modules=["to_k", "to_q", "to_v",
    "to_out.0"],
)

unet.add_adapter(unet_lora_config)
lora_layers = filter(lambda p:
    p.requires_grad, unet.parameters())
```


3. Project 3: using LoRa to train SD-1.5

- Using Huggingface "accelerate" training script from "diffusers" repo
 - Get an interactive job on a GPU node
 - Git clone the repo TBD
 - Create a virtualenv (SBEnv on Grex, CCEnv on Jupyter)
 - Install pip packages, including current versions of diffusers from git
 - Download / copy the training data
 - Dataset 1 and dataset 2 with "Scamps".
 - Run a salloc training job, obtaining new LoRa weights.
 - Validate the model, repeat etc.

3. Project 3: using LoRa to train SD-1.5

- Using Jupyter, repeat the exercise 2 but use generation with new layers added.
 - Will use HuggingFace convenient "pipe" interface that lets us set a pretrained model and abstract the encoding, decoding steps.
 - Let us use same pip environment in Jupyter as for the project 2.
 - The only change is to add our new extra layers to the model.
 - Try to generate an image about a "Scamp".

Strategies for larger Al Model training

- Large datasets, take a lot of time on a single GPU
- Large models would not fit into memory of a single GPU
- Distributed parallel training frameworks: .
 - Huggingface accelerate ,
 - Microsoft DeepSpeed ,
 - o etc,
- Data parallelism (split the data across GPUs)
- Pipeline parallelism (distribute model layers)
- Tensor parallelism (domain decomposition)

May rely on collective MPI operations (AllReduce, AllGather etc,)

DRI (Digital Research Infrastructure) for Al

IN MANY WAYS, AI VINDICATES THE "HPC WAY"

- ▶ Al needs fast interconnects. We had them, the cloud and the enterprise did not.
 - ▶ Microsoft deployed 40,000 KM of Infiniband, in 2023, built for the HPC market ~1999,
- ► Al needs message passing. MPI, the message passing interface, was built Open Source in the HPC community, ~1993
 - ▶ Now the standard library for transformer-based generative AI (e.g. ChatGPT, DeepSpeed, OpenAI etc.).
- ► Al needs heterogeneity GPUs for general purpose computing the hardware building block for Al came out of the HPC world ("GPGPU" ~2004).
- ► Al needs fast, large scale filesystems not object stores
- ► AI needs liquid cooling even 5 years ago, many datacenter providers were convinced they could just use air, now none are. HPC systems switched to liquid cooling a long time ago.
- ▶ This means AI needs HPC hardware (probably good) and HPC programmers (good if you are one, bad if you need to hire one).

tamIA, a real AI supercomputer of LavalU

A slide by Dan Stazione, Director of TACC

Which system for which workload?

System, kind (2025)	# GPU nodes	GPUs per node layout	Interconnect	Storage, PB	
TamlA , HPC (Laval)	42 (H100)	4 x NVIDIA HGX H100 SXM	4 x HDR200 Infiniband, non-blocking		
Vulcan, HPC (UofA)	205 (L40s)	4 x NVIDIA L40s	1x100Gbps Ethernet	5PB	
Killarney, HPC (UofT)	168 (L40s) 10(H100)	4 x NVIDIA L40s, 8 x NVIDIA H100 SXM	1x HDR100, 2x HDR200	1.5 PB	
HPC systems ?					
Fir, HPC	160	4 x NVidia H100 SXM	1x HDR200 Infiniband, blocking	51PB	
Nibi, HPC	36	8 x Nvidia H100 SXM	1x Nokia 200/400G Ethernet	25PB	
Trillium, HPC	60	4 x NVidia H100 SXM	1x NDR200/ NDR400 Infiniband	29PB	

