
umanitoba.ca

Using HPC systems for
Python-based AI/ML tasks

UM Fall HPC/Cloud Workshop

Grigory Shamov, October 16, 2025

umanitoba.ca

Why the talk is about Python AI/ML on HPC?
● Everyone (almost) is using Python for AI / ML

● HPC has high performance hardware and software
NVIDIA (and AMD) GPUs
High bandwidth, Low-latency Interconnect (NVidia Infiniband)

Scalable, parallel File Systems (VAST, CEPH, DDN Infinia) or local SSD NVMe

● HPC community has a data centre infrastructure
○ Power; high efficiency cooling

● Many AI shops do use same HPC technology
○ SLURM, Linux, etc.
○ Some do use Kubernetes and containerized workflows

umanitoba.ca

This talk is about using our HPC infra
● HPC presents a few issues for running AI workflows:

○ How to maintain the (largely Python-based) software on HPC?
■ Need to be able to get software and AI Models running

○ Good to have some ability to interactive workflows for debugging
○ How to adapt it to the SLURM based, batch workflow

■ Need to match HPC resources with AI workflow efficiently

● SaaS competition! (Google Colab, for example).

umanitoba.ca

Artificial Intelligence and Machine Learning revolution

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/3
5179.pdf “The Unreasonable Efficiency of Data”

http://www.incompleteideas.net/IncIdeas/BitterLesson.html ”The Bitter Lesson”

https://dl.acm.org/doi/10.5555/3295222.3295349 ”Attention is all you need””

 https://blogs.nvidia.com/blog/what-are-foundation-models/ NVidia on foundational models.

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://dl.acm.org/doi/10.5555/3295222.3295349
https://blogs.nvidia.com/blog/what-are-foundation-models/

umanitoba.ca

What are those AI and “models”
● Layers of numerical weights, and metadata about them
● Specific to the model’s software and hardware (precision)

○ (“transformers” would have attention layer, etc.)

● Training/tuning optimizes the weights of all or some layers
● Inference converts a prompt into a numerical representation , passes through

model layers and generates outputs

https://poloclub.github.io/transformer-explainer/

https://poloclub.github.io/transformer-explainer/

umanitoba.ca

Working with AI software and “models”
● Python packages : matrix math and optimization (torch, arrow, JAX, …), ML models

(transformers, diffusers, …) , training (accelerate, LoRa, etc.)
○ Need to manage software dependencies (modules, pip, virtualenv)
○ Must use optimized libraries from the host (CUDA, MPI, BLAS/LAPACK,

Arrow) → modules
○ Common tools like conda are often unwelcome in HPC

● The AI Models themselves (layers, weights) need to be obtained

● A popular community hub Huggingface : https://huggingface.co/
● https://docs.alliancecan.ca/wiki/Huggingface

https://huggingface.co/
https://docs.alliancecan.ca/wiki/Huggingface

umanitoba.ca

Typical tasks for AI / ML on HPC
● Training new models : optimize the weights
● Tuning existing models on additional datasets (LoRA, etc., but more

economical: selected layers)
● Inference: getting predictions/generalizations out of existing models

○ Tokenize the “prompt”,
○ Feed it through the layers
○ Convert the representation back to the “output”

● For this Session we will try three examples: Interactive inference for text, text
to graphics and tuning/training a graphic model in a batch job.

● Using Grex (mainly) or Magic Castle: need GPUs!

umanitoba.ca

Managing Python dependencies with pip

● Dependencies: Pip handles (mostly) Python dependencies, relying on OS for non-Python ones

a. Unlike conda, uv etc, that would package all binary dependencies as well.

b. HPC folks like to provide their own optimized binary software : load “modules”!

● Repositories: pip fetches packages from https://pypi.org/ or a local repository.

a. On CCEnv, each and every package must be repackaged to their “wheelhouse”.

b. On local software stack SBEnv, manylinux wheels can be used from pypi.org

● Installation destination: in particular when invoked in a Jupyter notebook cell.

a. user’s home directory $HOME/.local/{bin,lib,share} . (Grex)

b. Throw-away virtual environment under $SLURM_TMPDIR (Alliance HPC , MagicCastle)

c. Explicit virtualenv (create, activate and install) : best method. Needs a Jupyter kernel added.

umanitoba.ca

1. Project one: text generation using Qwen3
● We will generate text based on a prompt, with reasoning using a small LLM

● https://huggingface.co/Qwen/Qwen3-0.6B

● The code has three general stages
1. But first, use pip to install packages in Jupyter.

1.1. Don’t forget to load Lmod modules (Lmod tab) !
1.2. Monitoring tab for Node and GPU resources.

2. Import Python packages and see if they load
3. Set up encoders for the prompt
4. Run the inference/generation step
5. Decode the output, print result

● Can be made into a chatbot with tools like Gradio.

https://huggingface.co/Qwen/Qwen3-0.6B

umanitoba.ca

2. Project two: inference using SD-1.5
● We will generate images based on a text prompt
● https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5

○ (used to be runwayml/stable-diffusion-v1-5)
○ Will use torch, transformers and diffusers
○ Needs a GPU! On Grex or MagicCastle
○ Will use HuggingFace convenient “pipe” interface that lets us set a pretrained

model and abstract the encoding, decoding steps.
● Let us use same pip environment in Jupyter as for the project 1.

https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5

umanitoba.ca

3. Project 3: using LoRa to train SD-1.5
● The SD-1.5 model is unaware of certain things. I want to add

some knowledge to it: an ElderScrolls game character, Scamp
○ https://en.uesp.net/wiki/Lore:Scamp
○ Will use a handful of images from the fandom wiki (dataset 2)
○ Will use a handful of auto generated images from ChatGPT 4o.

(dataset 1)
○

● Low Rank Adaptation of Large Language Models (LoRa)
technique

○ Only adding a few layers, freezing the rest of the model
○ https://huggingface.co/docs/diffusers/en/training/lora

unet_lora_config = LoraConfig(
 r=args.rank,
 lora_alpha=args.rank,
 init_lora_weights="gaussian",
 target_modules=["to_k", "to_q", "to_v",
"to_out.0"],
)

unet.add_adapter(unet_lora_config)
lora_layers = filter(lambda p:
p.requires_grad, unet.parameters())

https://en.uesp.net/wiki/Lore:Scamp
https://huggingface.co/docs/diffusers/en/training/lora

umanitoba.ca

3. Project 3: using LoRa to train SD-1.5
● Using Huggingface “accelerate” training script from “diffusers” repo

○ Get an interactive job on a GPU node
○ Git clone the repo TBD
○ Create a virtualenv (SBEnv on Grex, CCEnv on Jupyter)
○ Install pip packages, including current versions of diffusers from git
○ Download / copy the training data

■ Dataset 1 and dataset 2 with “Scamps”.
○ Run a salloc training job, obtaining new LoRa weights.
○ Validate the model, repeat etc.

umanitoba.ca

3. Project 3: using LoRa to train SD-1.5
● Using Jupyter, repeat the exercise 2 but use generation with new layers added.

○ Will use HuggingFace convenient “pipe” interface that lets us set a
pretrained model and abstract the encoding, decoding steps.

○ Let us use same pip environment in Jupyter as for the project 2.
○ The only change is to add our new extra layers to the model.
○ Try to generate an image about a “Scamp”.

umanitoba.ca

Strategies for larger AI Model training
● Large datasets, take a lot of time on a single GPU
● Large models would not fit into memory of a single GPU
● Distributed parallel training frameworks: .

○ Huggingface accelerate ,
○ Microsoft DeepSpeed ,
○ etc,

● Data parallelism (split the data across GPUs)
● Pipeline parallelism (distribute model layers)
● Tensor parallelism (domain decomposition)

May rely on collective MPI operations (AllReduce, AllGather etc,)

DRI (Digital Research Infrastructure) for AI

A slide by Dan Stazione, Director of TACC

tamIA, a real AI supercomputer of LavalU

System, kind
(2025)

GPU
nodes

GPUs per node layout Interconnect Storage,
PB

TamIA , HPC (Laval) 42 (H100) 4 x NVIDIA HGX H100 SXM 4 x HDR200 Infiniband,
non-blocking

?

Vulcan, HPC (UofA) 205 (L40s) 4 x NVIDIA L40s 1x100Gbps Ethernet 5PB

Killarney, HPC (UofT) 168 (L40s)
10(H100)

4 x NVIDIA L40s,
8 x NVIDIA H100 SXM

1x HDR100,
2x HDR200

1.5 PB

HPC systems ?

Fir, HPC 160 4 x NVidia H100 SXM 1x HDR200 Infiniband, blocking 51PB

Nibi, HPC 36 8 x Nvidia H100 SXM 1x Nokia 200/400G Ethernet 25PB

Trillium, HPC 60 4 x NVidia H100 SXM 1x NDR200/ NDR400 Infiniband 29PB

Which system for which workload?

umanitoba.ca

