
umanitoba.ca

Using Jupyter Notebooks
on HPC systems

UM Fall HPC/Cloud Workshop

Grigory Shamov, October 15, 2025

umanitoba.ca

Why the talk is about Jupyter on HPC?
● There exists a lot of uses for dynamic languages like Python, R, Julia

○ JuPyteR (formerly iPython) is a popular debugging/Data analysis / collaboration tool
○ https://jupyter.org/

● HPC has high performance hardware and software
NVIDIA (and AMD) GPUs; Fast Interconnect ; Large memory nodes, etc.
Scalable, parallel File Systems (VAST, CEPH, DDN Infinia) or local SSD NVMe

● Uses of JuPyteR in HPC?
○ Interactive jobs, debugging
○ Visualization, data analysis requiring larger memory, GPUs
○ “Moving compute closer to data”

● Why not using Jupyter in HPC?
○ Batch processing is more efficient , can be done concurrently

https://jupyter.org/

umanitoba.ca

This talk is about using our HPC infra
● HPC presents users with its own issues: Batch Jobs and Software Modules

○ How to run Jupyter on HPC as a job? Interactively?
○ How to access/manage Jupyter software

■ Tools specific for dealing with HPC Lmod modules
○ How to handle Notebooks Kernels (for Python(s), R, Julia, etc.)?

■ Virtual environments
■ Module dependencies
■ Containers?

umanitoba.ca

Working with Notebooks in HPC 1.
● A Jupyter notebook / Jupyter lab is in practice a Web server.

○ Typically users would start it on a PC/laptop as jupyter lab
○ Would start a browser and show a notebook

● How to scale it up? How to use it on powerful servers like HPC or cloud
● Can be started manually on a login node and/or interactive job

○ Needs Python packages : jupyter, ipython, etc.
○ Need to manage software dependencies (modules, pip, virtualenv)
○ Spans remote and local systems

■ Need to “SSH tunnel” the web server connection
■ Or have a browser on the remote server which is less useful

umanitoba.ca

Working with Notebooks in HPC 1.
● Can be started manually on a login node and/or interactive job

ssh to a node; or start an interactive job with salloc

module load python/… ; i

install jupyterlab in a virtualenv, or a conainer ; start the notebook

jupyter-notebook --ip 0.0.0.0 --no-browser --port 8765

ssh -fNL 8765:g333:8765 yourusername@bison.hpc.umanitoba.ca

Then point the browser to a https://localhost:8765

mailto:yourusername@bison.hpc.umanitoba.ca
https://localhost:8765

umanitoba.ca

Working with Notebooks 2
● A notebook is a Web server. It can be started automatically;
● The connection between the Notebook server can be “proxied” automatically

○ So that computation is done by a computing backend (HPC, cloud, etc.)

● JupyterHub is a web server that starts notebooks and proxies them automatically
○ Google Colab is a powerful cloud platform: https://colab.research.google.com/
○ PIMS provides SyZyGy (which uses DRAC cloud) https://umanitoba.syzygy.ca
○ Magic Castle and JupyterHub on (some) new DRAC systems

● OpenOnDemand is a Web portal that starts interactive jobs and proxies them automatically
○ Supports Jupyter notebooks too! Provided on Grex and (some) new DRAC systems

https://colab.research.google.com/
https://umanitoba.syzygy.ca

umanitoba.ca

JupyterHub and/or OpenOnDemand
System JupyterHub ? OpenOnDemand ?

Fir (SFU) jupyterhub.fir.alliancecan.ca

Nibi (Sharcnet, UWaterloo) ondemand.sharcnet.ca

Rorqual (CQ, Montreal) jupyterhub.rorqual.alliancecan.ca

Trillium (SciNet, UofT) ondemand.scinet.utoronto.ca

MagicCastle jupyter.demo.hpc.umanitoba.ca

Grex ood.hpc.umanitoba.ca

https://jupyterhub.fir.alliancecan.ca/
https://ondemand.sharcnet.ca/
https://jupyterhub.rorqual.alliancecan.ca/
https://ondemand.scinet.utoronto.ca
http://jupyter.demo.hpc.umanitoba.ca
http://ood.hpc.umanitoba.ca

umanitoba.ca

Notebooks , kernels and packages
● A notebook is a Web server.
● The server is written in Python and JS; provides interfaces with “Cells”

○ Code cells; Markdown documentation cells
● What does runs in the cells? “Kernels”.

○ Kernels support a particular language (R, Python, Julia, etc.)
○ Many kernels have to be “installed” on user level
○ Some are available as Lmod modules on CC software stack

● How to manage kernels? Per-user command line tools (jupyter and corresp Language).

pip install ipykernel jupyter && python -m ipykernel install –user –name=my_python3

jupyter kernelspec list ; or jupyter kernelspec uninstall my_my_python3 ; etc.

More information: https://um-grex.github.io/grex-docs/specific-soft/jupyter-notebook/

https://um-grex.github.io/grex-docs/specific-soft/jupyter-notebook/

umanitoba.ca

Managing Python dependencies with pip
● Dependencies: Pip handles (mostly) Python dependencies, relying on OS for non-Python ones

a. Unlike conda, uv etc, that would package all binary dependencies as well.

b. HPC folks like to provide their own optimized binary software : load “modules”!

● Repositories: pip fetches packages from https://pypi.org/ or a local repository.

a. On CCEnv, each and every package must be repackaged to their “wheelhouse”.

b. On local software stack SBEnv, manylinux wheels can be used from pypi.org

● Installation destination: in particular when invoked in a Jupyter notebook cell.

a. user’s home directory $HOME/.local/{bin,lib,share} . (Grex)

b. Throw-away virtual environment under $SLURM_TMPDIR (Alliance HPC , MagicCastle)

c. Explicit virtualenv (create, activate and install) : best method. Needs a Jupyter kernel added.

umanitoba.ca

Exercise: data analysis with Pandas
We will load some Eventbrite registration data (anonimized!) and analyze using the Pandas Python package

● Load necessary modules in Jupyter; using LMod tab.
● Get a Jupyter kernel for Python with JupyterLab launcher

a. As an exercise, can create/install kernel in a virtualenv
b. Or pick from a module.

● Import packages
● Use a notebook to load the data and analyze
● Hands-on exercise : copy the materials and open notebooks in JupyterLab notebook

a. On Grex: cp -r /global/software/ws-oct2025/jupyter_pandas ~
b. On Magic Castle: cp -r /home/shared/ws-oct2025/jupyter_pandas ~

umanitoba.ca

