
umanitoba.ca

Follow up, questions, docs
Grigory Shamov

Nov 2024

Odd bits and ends from the first session

Modules and software stacks,
• Private modules
• Python from CCEnv

OpenOnDemand GUI for Grex
• zebu.hpc.umanitoba.ca ⇒ ood.hpc.umanitoba.ca VM

Documentation site for Grex https://um-grex.github.io/grex-docs/

Data sharing and data transfer.
• Using Linux ACLs and groups
• Using Globus on Grex

https://um-grex.github.io/grex-docs/

umanitoba.ca

Containers in HPC:
Singularity/ Apptainer

Grigory Shamov

Nov 2024

What are containers and why they are popular
Containers are ways to encapsulate Software.

• Supposed to make software dependencies management easier.

Containers are Linux-specific tool of software isolation
• “Chroot” + “Linux namespaces” + runtime to run things + tools to manage things
• Shares kernel with the host Linux system: very little overhead
• Shares kernel with host, unlike Virtual Machines : bad security

The Earliest and most popular container environment for long time was “Docker”.
Q: Can I use Docker in your HPC environment?

Another popular environment developed for HPC environments is Singularity.
The project since forked :
SingularityCE by Sylabs and Apptainer by the Linux Foundation

Software layers (slide by Dr. Ali Kerrache)

OS: kernel, drivers, daemons, anything privileged (e.g. the sudo command):
always local. Some legally restricted software too (VASP).

Gray area: Slurm, Lustre client libraries, IB/OmniPath/InfiniPath client
libraries (all dependencies of OpenMPI) in Nix {or gentoo} layer, but can be
overridden using PATH & LD_LIBRARY_PATH.

Nix or gentoo: GNU libc, autotools, make, bash, cat, ls, awk, grep, etc.

Software stacks: modules for Intel, PGI, OpenMPI, CUDA, MKL, high-level
applications. Multiple architectures (sse3, avx, avx2, avx512)

User layer: Python packages, Perl and R modules, home made codes, … User

A
na

ly
st

s
Sy

s.
 A

dm
in

Glossary of Containers

● Containerfile - Recipe for building an image, including OS and software within the image. Usually a

text file: Singularity files, Dockerfiles etc.

● Image- The result of building the recipe described in the Containerfile. Usually a form of archive (or

number of archives i.e. “layers”) of a filesystem tree.

● Container- The running instance of an image. Can be a computing process, or a service daemon.

● Container runtime: A set of tools used for building and running containers, such as Docker, Podman,

Singularity, Apptainer and many others

● OCI (Open Container Initiative)- common standard for container runtimes and container image

formats. Podman and Docker are OCI-compliant, meaning their syntax is generally interchangeable.

● Registry- An online storage area for images. Typical examples are DockerHub or Quay.io.

Popular container systems
#1 CE is Docker, which provides:

● Container tools and runtime that uses cgroups to manage resources
○ Assumers super-user access to the system
○ Runs as “root” inside container, may change privileges/users inse

● Container “recipes” to make new containers
● “Images” that are made of overlaid “layers”

○ Now standardized as the OCI format https://opencontainers.org/
○ Very convenient, economic images; each RUN makes a new layer.

● Container Registry that has ready images to download
○ Very successful DockerHub registry: https://hub.docker.com/

● Podman, Flatpack, Snap, Bubblewrap, .. : many other Container engines around!

https://opencontainers.org/
https://hub.docker.com/u/rucio

So, can I just use Docker in HPC environment?
● The question comes to “do I need root access”.

○ On a shared system, it is not possible.
○ Also, HPC does resource management with SLURM while Docker does its

own. These are hard to coordinate.
● Alternatives for our HPC systems: Singularity / Apptainer or Podman

● Singularity was developed to run as a user, and as a regular process.
○ Mostly geared towards batch computing (a job starts and ends)
○ Can be used on shared filesystems

● Can create container images from Docker images!
○ However, not every image will work
○ Docker overlays are writable, Singularity images are immutable
○ Docker container may change users, starts as root;
○ https://apptainer.org/docs/user/latest/docker_and_oci.html#differences-and-limitations-vs-docker

https://apptainer.org/docs/user/latest/docker_and_oci.html#differences-and-limitations-vs-docker

Running software in a Container
• Need the software, the container instance, and the container runtime
• Usually software comes with options (input and output files, flags etc.)

[~]$ Software_executable software_options

Then, to run it in the container a prefix is added:

[~]$ {Container runtime command and options} {Container Image or URI} \
 [Software_executable] software options

The container Image can be a local object (first “pulled” or “built”) or a URI in some of
the repositories. An example:

[~]$ docker run docker://staphb/trimmomatic sh -c "echo Hello from inside the trimmomatic

container

Example from NGC cloud: Sing. vs Docker
● NVidia provides a Container library.

https://catalog.ngc.nvidia.com/orgs/hpc/collections/nvidia_hpc
● NAMD, a molecular dynamics package

https://catalog.ngc.nvidia.com/orgs/hpc/containers/namd

Running with nvidia-docker
export NAMD_TAG={TAG} ; export NAMD_EXE=namd3 # TAG is the NAMD version number

docker run -it --rm --gpus all --ipc=host -v $PWD:/host_pwd -w /host_pwd \
nvcr.io/hpc/namd:$NAMD_TAG ${NAMD_EXE} +p1 +devices 0 +setcpuaffinity {input_file}

Running with Singularity
export NAMD_TAG={TAG} ; export NAMD_EXE=namd3 # TAG is the NAMD version number

singularity run --nv -B $PWD:/host_pwd --pwd /host_pwd nvcr.io/hpc/namd:$NAMD_TAG \
${NAMD_EXE} +p1 +devices 0 +setcpuaffinity {input_file}

https://catalog.ngc.nvidia.com/orgs/hpc/collections/nvidia_hpc
https://catalog.ngc.nvidia.com/orgs/hpc/containers/namd
http://nvcr.io/hpc/namd:$NAMD_TAG
http://nvcr.io/hpc/namd:$NAMD_TAG

Singularity or Apptainer?

● Singularity was developed since 2017 by a company called Sylabs.
○ https://sylabs.io/

● Due to personal conflicts, the development got forked
● One branch was taken as a Linux Foundation project called Apptainer.

○ https://apptainer.org/
● Sylabs continues to develop Singularity-CE and an Enterprise edition.

● The teams work in different directions, but so far products are compatible
○ The Container SIF format is common
○ OverlayFS support, rootless features (Apptainer focus)
○ Support of OCI container standards (Sylabs focus)

https://sylabs.io/
https://apptainer.org/

So, do I need “root” to use Singularity In HPC?

● Yes, in some cases it is still needed.
○ When building new containers
○ Inspecting container images

● Containers have a working copy of an entire Linux distribution, some parts of
which are owned by root.
○ Thus to build a new container,one has to be root
○ Unless a ready image from Docker is usable
○ Unless a system and Singularity/Apptainer installation support fakeroot and

namespaces
○ Unless you delegate build of the image to a remote build service

Using Singularity or Apptainer
● You will need the (a?) Singularity engine installed.

○ https://github.com/sylabs/singularity (sources, RPMS)
○ https://github.com/apptainer/apptainer ; also in EPEL
○ Needs root privileges to install

● On the Alliance Federation systems, Apptainer is installed as a module
$> module load apptainer

● On Grex, Singularity-CE is installed as a module
$> module load singularity

● Then, “apptainer” or “singularity” will be in the PATH Lets run a first container?
$> singularity help (or apptainer help)
$> singularity exec library://lolcow cowsay "Mooo"
$> singularity run docker://godlovedc/lolcow (this will work with apptainer)

https://github.com/sylabs/singularity
https://github.com/apptainer/apptainer

Running vs Executing , Inside vs Outside
● A container image typically has more than one executable
● There may be well defined “Entrypoints” (Docker) or “Runscripts” (Singularity)

$> singularity run {container_image}

● Any command can be executed inside a container with “exec”
$> singularity exec {container_image} {a_command}

● How to find what is there, and what container is about to do?
$> singularity inspect –runscript {container_image}
$> singularity shell {container_image}
$> singularity exec {container_image} bash

• Let’s explore the lolcow container images.

Binding directories into the container
● Singularity containers are immutable ; how do we let them access our data?

○ (mostly, –writable-tmpfs and –overlay features may work)
○ Docker used to have “volume” containers for data

● Singularity containers are safe to use on HPC’s cluster file systems, like /home/
or /project or local scratch $TMPDIR or $SLURM_TMPDIR
○ - - bind or -B options to bind host directory into container

■ - - bind /scratch:/workdir binds /workdir in the container to /scratch
■ - - bind /opt binds /opt on host to /opt in the container

○ /home/$USER , /tmp , /proc, /sys, /dev mounts by default
○ GPU drivers mounts by default with –nv or –roce
○ - - containall prevents default mounts if needed

● Let’s try to bind and contain directories using a image..

Environment, containment and GPUs
● Singularity “contains” . Some of the host environment is shared with the

container, some is not.
○ Docker/Podman contain more strictly that Singularity/Apptainer
○ But, SIF images are read-only while Docker/OCI are writeable
○ - - compat == --containall, --no-init, --no-umask, --no-eval, --writable-tmpfs
○ - - cleanenv

● How to pass environments into a SING container?
○ At runtime: SINGULARITYENV_ or --env

$> export SINGULARITYENV_HELLO=”hello” \
 singularity exec {container_image} sh -c “echo $HELLO”

○ At build time: from parent container (Docker) or %environment section
● How to pass GPU drivers? For NVidia,

$> singularity exec --nv {container_image} {a_command}

Getting containers (that is, container images)
● Q: do I still need “root” to make my own images?

● “Pulling” containers from existing registries’ URI does not need root
○ docker://, SylabsCloud library:// , Singularity Hub (defunct) shub:// , etc.
○ Local registries, if present; https://singularity-hpc.readthedocs.io/

$> apptainer pull docker://alpine
$> apptainer pull docker://quay.io/biocontainers/pandas

$> singularity pull --arch amd64 library://hpc/default/psi4:1.3

• “Building” containers from Recipes (Definition files)
• Generally requires “root”

$> sudo singularity build {container_image}.sif Singularity

https://singularity-hpc.readthedocs.io/

Managing container images
● Singularity format (SIF) images are large blobs of compressed SquashFS
● Need space to store them

● Need space to pull them: SINGULARITY_CACHE_DIR
○ Image storage space defaults to $HOME/.local

● Need space to unpack them: memory and storage limits
○ Disk space defaults to /tmp/
○ Login nodes may have cgroups restrictions on Memory/CPUs per session!
○ Login nodes may have ulimits restrictions on some systems too (# of files etc.)
○ Use a SLURM sacct job
○ SINGULARITY_TMP_DIR to unpack SquashFS

Building new containers from recipes
● “Building” containers from Recipes (Definition files)

○ Generally requires “root”
$> sudo singularity build {container_image}.sif Singularity

● By default builds a compressed image. –sandbox can make a sandbox image
● Has to start a container from some base Linux OS distribution

○ From a Docker image , from Sylabs library
○ From scratch using a package manager from a Linux distribution

■ Debootstrap
■ Yum / DNF

○ From an existing container or a sandbox.

● Can run custom commands, installation scripts after the base Linux is installed
● Can set Environment variables , copy files, define entrypoints / runscripts

● Where to Bootstrap it From ?

● Modifies the container in %post

(can also:)

● copy %files

● Set the %environment

● Define entry point in %runscript

● etc.

https://apptainer.org/docs/user/latest/
build_a_container.html

https://apptainer.org/docs/user/latest/build_a_container.html
https://apptainer.org/docs/user/latest/build_a_container.html

Using remote builds in Singularity
● Old SingularityHub by V. Sochat was very useful when it was

○ Would autobuild from recipes on a Github repository

● Sylabs Cloud provides “remote build” functionality
○ Works in SingularityCE, Apptainer has the functionality removed

● Needs an access key and a registration on Sylabs Cloud
○ Mind the I.P. rights there, if you share your recipe with the company!

$> singularity remote {command} (list, login , etc.)
 (need to initialize the remote build with the accesskey)

$> singularity build -r {container_image} Singularity.def

Demos and examples of use cases

● Using NVidia NGC container registry
$> salloc --partition=gpu --gpus=1 --cpus-per-gpu=6 --mem=12000

$> module load gcc/11.2 cuda/11.7 singularity

$> singularity pull docker://nvcr.io/hpc/lammps:patch_3Nov2022

$> wget https://lammps.sandia.gov/inputs/in.lj.txt

$> wget https://gitlab.com/NVHPC/ngc-examples/-/raw/master/lammps/single-node/run_lammps.sh

$> singularity run --nv -B $PWD:/host_pwd --pwd /host_pwd ./lammps_patch_3Nov2022.sif ./run_lammps.sh

● Using Singularity/Apptainer as part of larger workflow systems
○ Nextflow is one of them, for example this project:
○ https://github.com/Lcornet/GENERA/wiki/01.-Table-of-contents
○ https://github.com/Lcornet/GENERA/blob/main/Singularity/Genome-downloader.def

https://gitlab.com/NVHPC/ngc-examples/-/raw/master/lammps/single-node/run_lammps.sh
https://github.com/Lcornet/GENERA/wiki/01.-Table-of-contents
https://github.com/Lcornet/GENERA/blob/main/Singularity/Genome-downloader.def

● Using Singularity to encapsulate Conda (reduces number of files)
○ Conda is a chrooted environment that manages Python libraries
○ Also includes all the binary/OS dependencies, large number of small files

Bootstrap: docker
From: continuumio/miniconda:latest
%files
 # the file below must be present along the Singularity.def recipe
 environment.yml
%post
 ENV_NAME=mytest
 echo ". /opt/conda/etc/profile.d/conda.sh" >> $SINGULARITY_ENVIRONMENT
 echo "conda activate $ENV_NAME" >> $SINGULARITY_ENVIRONMENT
 . /opt/conda/etc/profile.d/conda.sh
 conda env create -f environment.yml -p /opt/conda/envs/$ENV_NAME
 conda clean --all
%runscript

 exec "$@"

Demos and examples of use cases

environment.yml :

name: my_env
channels:
 - defaults
dependencies:
 - numpy=1.18.1
 - pandas=1.0.1
 - scikit-learn=0.22.1

● Can “exec” software from well-built containers images

● Can convert suitably built Docker images

○ Making or finding a suitable container image is a bit of work

○ Bleeding-edge codes usually are poorly maintained and that includes their

Docker images

● If software is already provided via Modules-based HPC software stack?

● Encapsulating software and sometimes data to reduce number of files

○ Conda is the prime example

○ OpenFOAM, certain GIS software could benefit from writable overlays

Is Apptainer/Singularity a silver bullet?

umanitoba.ca

