
umanitoba.ca

Containers in HPC: Docker,
Singularity, Apptainer

Grigory Shamov

HPC Workshop , Autumn 2023

Nov 7, 2023

What are containers and why they are popular
Containers are supposed to make software dependencies management easier.

Containers are Linux-specific tool of software isolation
“Chroot” + “Linux namespaces” + runtime to run things + tools to manage things
Shares kernel with the host Linux system: very little overhead
Shares kernel with host, unlike Virtual Machines : bad security

The Earliest and most popular container environment for long time was “Docker”.
Q: Can I have my Docker in your HPC environment?

Another popular environment developed for HPC environments is Singularity.
The project since forked :
SingularityCE by Sylabs and Apptainer by the Linux Foundation

Software layers (slide by Dr. Ali Kerrache)

OS: kernel, drivers, daemons, anything privileged (e.g. the sudo command):
always local. Some legally restricted software too (VASP).

Gray area: Slurm, Lustre client libraries, IB/OmniPath/InfiniPath client
libraries (all dependencies of OpenMPI) in Nix {or gentoo} layer, but can be
overridden using PATH & LD_LIBRARY_PATH.

Nix or gentoo: GNU libc, autotools, make, bash, cat, ls, awk, grep, etc.

Software stacks: modules for Intel, PGI, OpenMPI, CUDA, MKL, high-level
applications. Multiple architectures (sse3, avx, avx2, avx512)

User layer: Python packages, Perl and R modules, home made codes, … User

A
na

ly
st

s
Sy

s.
 A

dm
in

Popular container systems
#1 CE is Docker, which provides:

● Container tools and runtime that uses cgroups to manage resources
○ Assumers super-user access to the system
○ Runs as “root” inside container, may change privileges/users inse

● Container “recipes” to make new containers
● “Images” that are made of overlaid “layers”

○ Now standardized as the OCI format https://opencontainers.org/
○ Very convenient, economic images; each RUN makes a new layer.

● Container Registry that has ready images to download
○ Very successful DockerHub registry: https://hub.docker.com/
○ Recently got restricted, does limit bandwidth and number of downloads

● Podman, Flatpack, Snap, Bubblewrap, .. : many other Container engines around!

https://opencontainers.org/
https://hub.docker.com/u/rucio

Popular use cases
#1 is Docker, which provides:

● Originally developed for running “services” in Docker. (a Web server, a DB)
● Several tools got developed to run many “microservices”, autoscale etc

○ Google Kubernetes ; eventually ceased to depend on Docker runtime
○ DockerSwarm, etc.

● In Research Computing, Docker become popular for software distribution.
○ For software development, building software in fixed environments
○ For reproducibility, sharing container images or container recipes
○ For dealing with bleeding edge software that has bad/changing

dependencies
■ AI/ML, Genomics like containers a lot

○ For running software in container-native environments! K8s, etc.

So, can I just use Docker in HPC environment?

● The question comes to “do I need root access”.
○ On a shared system, it is not possible.
○ Also, HPC does resource management with SLURM while Docker does its

own. These are hard to coordinate.
● Singularity was developed to run as a user, and as a regular process.

○ Mostly geared towards batch computing (a job starts and ends)
○ Can be used on shared filesystems

● Can create container images from Docker images!
○ However, not every image will work
○ Docker overlays are writable, Singularity images are immutable
○ Docker container may change users, starts as root;
○ https://apptainer.org/docs/user/latest/docker_and_oci.html#differences-and-limitations-vs-docker

https://apptainer.org/docs/user/latest/docker_and_oci.html#differences-and-limitations-vs-docker

Singularity or Apptainer?

● Singularity was developed since 2017 by a company called Sylabs.
○ https://sylabs.io/

● Due to personal conflicts, the development got forked to HPC-NG
● Then, HPC-NG was taken as a Linux Foundation project Apptainer.

○ https://apptainer.org/
● Sylabs develops Singularity-CE and an Enterprise edition.

● Wikipedia has an interesting discussion
○ https://en.wikipedia.org/wiki/Talk:Singularity_(software)

● The teams work in different directions, but so far products are compatible
○ The Container SIF format
○ OverlayFS support, rootless features
○ Support of OCI container format

https://sylabs.io/
https://apptainer.org/
https://en.wikipedia.org/wiki/Talk:Singularity_(software)

So, do I need “root” to use Singularity In HPC?

● Yes, in some cases it is still needed.
○ When building new containers
○ Inspecting container images

● Containers have a working copy of an entire Linux distribution, some parts of
which are owned by root.
○ Thus to build a new container,one has to be root
○ Unless a ready image from Docker is usable
○ Unless a system and Singularity/Apptainer installation support fakeroot and

namespaces
○ Unless you delegate build of the image to a remote build service

Using Singularity or Apptainer
● You will need the (a?) Singularity engine installed.

○ https://github.com/sylabs/singularity (sources, RPMS)
○ https://github.com/apptainer/apptainer ; also in EPEL
○ Needs root privileges to install

● On the Alliance Federation systems, Apptainer is installed as a module
$> module load apptainer

● On Grex, Singularity-CE is installed as a module
$> module load singularity

● Then, “apptainer” or “singularity” will be in the PATH Lets run a first container?
$> singularity help (or apptainer help)
$> singularity exec library://lolcow cowsay "Mooo"
$> singularity run docker://godlovedc/lolcow (this will work with apptainer)

https://github.com/sylabs/singularity
https://github.com/apptainer/apptainer

Running vs Executing , Inside vs Outside
● A container image typically has more than one executable
● There may be well defined “Entrypoints” (Docker) or “Runscripts” (Singularity)

$> singularity run {container_image}

● Any command can be executed inside a container with “exec”
$> singularity exec {container_image} {a_command}

● How to find what is there, and what container is about to do?
$> singularity inspect –runscript {container_image}
$> singularity shell {container_image}
$> singularity exec {container_image} bash

• Let’s explore the lolcow container images.

Binding directories into the container
● Singularity containers are immutable ; how do we let them access our data?

○ (mostly, –writable-tmpfs and –overlay features may work)
○ Docker used to have “volume” containers for data

● Because ran as unpriviliged user, Singularity containers are safe to use on HPC’s
cluster filesystems, like /home/ or /project or /global/scratch or /local
○ –bind or -B options to bind host directory into container

■ –bind /scratch:/workdir binds /workdir in the container to /scratch
■ –bind /opt binds /opt on host to /opt in the container

○ /home/$USER , /tmp , /proc, /sys, /dev mounts by default
○ GPU drivers mounts by default with –nv or –roce
○ –containall prevents default mounts if needed

● Let’s try to bind and contain directories using a image..

Getting containers (that is, container images)
● Q: do I still need “root” to make my own images?

● “Pulling” containers from existing registries’ URI does not need root
○ docker://, SylabsCloud library:// , Singularity Hub (defunct) shub:// , etc.
○ Local registries, if present; https://singularity-hpc.readthedocs.io/

$> apptainer pull docker://alpine
$> apptainer pull docker://quay.io/biocontainers/pandas

$> singularity pull --arch amd64 library://hpc/default/psi4:1.3

• “Building” containers from Recipes (Definition files)
• Generally requires “root”

$> sudo singularity build {container_image}.sif Singularity

https://singularity-hpc.readthedocs.io/

Using Sandbox containers from CVMFS

● An image is a chrooted and compressed directory tree; SquashFS
○ There can be “sandbox”, uncompressed directory tree containers

● Some organizations distribute their software via CERN VM Filesystem
 https://cernvm.cern.ch/fs/

○ OpenScienceGrid https://osg-htc.org/
● OSG distributes Singularity / Apptainer containers in sandbox format

○ A recipe can be deposited in OSG registry by OSG members
● If a HPC machine (like Cedar or Grex) does provide the OSG software:

$> ls /cvmfs/singularity.opensciencegrid.org/lammps
● Lets run an Intel HPL benchmark from OSG

$> singularity shell /cvmfs/singularity.opensciencegrid.org/intel/oneapi-hpckit:latest
$> cd /opt/intel/oneapi/mkl/latest/benchmarks/linpack
$> ./runme_xeon64

https://cernvm.cern.ch/fs/
https://osg-htc.org/

Building new containers from recipes
● “Building” containers from Recipes (Definition files)

○ Generally requires “root”
$> sudo singularity build {container_image}.sif Singularity

● By default builds a compressed image. –sandbox can make a sandbox image
● Has to start a container from some base Linux OS distribution

○ From a Docker image , from Sylabs library
○ From scratch using a package manager from a Linux distribution

■ Debootstrap
■ Yum / DNF

○ From an existing container or a sandbox.

● Can run custom commands, installation scripts after the base Linux is installed
● Can set Environment variables , copy files, define entrypoints/runscripts

● Where to Bootstrap it From ?

● Modifies the container in %post

(can also:)

● copy %files

● Set the %environment

● Define entry point in %runscript

● etc.

https://apptainer.org/docs/user/latest/
build_a_container.html

https://apptainer.org/docs/user/latest/build_a_container.html
https://apptainer.org/docs/user/latest/build_a_container.html

Using remote builds in SIngularity
● Old SingularityHub by V. Sochat was very useful when it was

○ Would autobuild from recipes on a Github repository

● Sylabs Cloud provides “remote build” functionality
○ Works in SingularityCE, Apptainer has the functionality removed

● Needs an access key and a registration on Sylabs Cloud
○ Mind the I.P. rights there, if you share your recipe with the company!

$> singularity remote {command} (list, login , etc.)
 (need to initialize the remote build with the accesskey)

$> singularity build -r {container_image} Singularity.def

Demos and examples of use cases

● Using NVidia NGC container registry
$> salloc --partition=gpu --gpus=1 --cpus-per-gpu=6 --mem=12000

$> module load gcc/11.2 cuda/11.7 singularity

$> singularity pull docker://nvcr.io/hpc/lammps:patch_3Nov2022

$> wget https://lammps.sandia.gov/inputs/in.lj.txt

$> wget https://gitlab.com/NVHPC/ngc-examples/-/raw/master/lammps/single-node/run_lammps.sh

$> singularity run --nv -B $PWD:/host_pwd --pwd /host_pwd ./lammps_patch_3Nov2022.sif ./run_lammps.sh

● Using Singularity/Apptainer as part of larger workflow systems
○ Nextflow is one of them, for example this project:
○ https://github.com/Lcornet/GENERA/wiki/01.-Table-of-contents
○ https://github.com/Lcornet/GENERA/blob/main/Singularity/Genome-downloader.def

https://gitlab.com/NVHPC/ngc-examples/-/raw/master/lammps/single-node/run_lammps.sh
https://github.com/Lcornet/GENERA/wiki/01.-Table-of-contents
https://github.com/Lcornet/GENERA/blob/main/Singularity/Genome-downloader.def

● Using Singularity to encapsulate Conda (reduces number of files)
○ Conda is a chrooted environment that manages Python libraries
○ Also includes all the binary/OS dependencies, large number of small files

Bootstrap: docker
From: continuumio/miniconda:latest
%files
 # the file below must be present along the Singularity.def recipe
 environment.yml
%post
 ENV_NAME=mytest
 echo ". /opt/conda/etc/profile.d/conda.sh" >> $SINGULARITY_ENVIRONMENT
 echo "conda activate $ENV_NAME" >> $SINGULARITY_ENVIRONMENT
 . /opt/conda/etc/profile.d/conda.sh
 conda env create -f environment.yml -p /opt/conda/envs/$ENV_NAME
 conda clean --all
%runscript

 exec "$@"

Demos and examples of use cases

environment.yml :

name: my_env
channels:
 - defaults
dependencies:
 - numpy=1.18.1
 - pandas=1.0.1
 - scikit-learn=0.22.1

● Can “exec” software from well-built containers images

● Can convert suitably built Docker images

○ Making or finding a suitable container image is a bit of work

○ Bleeding-edge codes usually are poorly maintained and that includes their

Docker images

● If software is already provided via Modules-based HPC software stack?

● Encapsulating software and sometimes data to reduce number of files

○ Conda is the prime example

○ OpenFOAM, certain GIS software could benefit from writable overlays

Is Apptainer/Singularity a silver bullet?

umanitoba.ca

