
Basics of Linux Shell

UManitoba Fall 2023
High-Performance Computing Workshop

Stefano Ansaloni

University of Manitoba

November 6, 2023



About me

Stefano Ansaloni

Cloud Computing Specialist at University of Manitoba
(part of the HPC support team)

Linux User/Admin since 2005



What is a shell?

From Wikipedia (Unix Shell):

A Unix shell is a command-line interpreter or shell that
provides a command line user interface (CLI) for Unix-
like operating systems. The shell is both an interactive
command language and a scripting language, and is used
by the operating system to control the execution of the
system using shell scripts.

Or, simply put, the shell is a program that takes commands from
the keyboard and gives them to the operating system to execute.

https://en.wikipedia.org/wiki/Unix_shell


Common shells

Shells commonly shipped with Unix-like systems:

▶ Bourne Shell - sh (probably the most widely distributed and
influential of the early Unix shells)

▶ Bourne-Again Shell - bash (usually the default interactive
shell for users on most GNU/Linux systems)



What is a terminal?

A terminal (or terminal emulator) is a graphical program that
allows you to interact with the shell.



Common terminals

Terminal emulators commonly shipped with GNU/Linux systems:

▶ Gnome Terminal (default terminal for the Gnome desktop
environment)

▶ Konsole (default terminal for the KDE desktop environment)

▶ XTerm (generic terminal for the X window system)

▶ MobaXterm (enhanced terminal for Windows with X11 server
and SSH client)

▶ MacOS Terminal (default terminal on MacOS)

▶ iTerm2 (enhanced terminal for MacOS)



Command prompt

The prompt (or command prompt) is issued by the shell, and while
it is displayed, you can type commands.

Prompt examples:

▶ user@hostname:/path/to/dir$

▶ [user@hostname dir]$



Tab key

When typing commands inside a shell, you can use the tab key
( ) to autocomplete commands.

For example: if you write “ech” and then press , the shell will
complete the command to “echo”.

(Some conditions apply)



Arrow keys

You can navigate the command history using the up and down
arrow keys ( , ).

This allows you to easily re-execute a previous command without
retyping it.



Working directory

Usually the prompt informs you about the current working
directory (or current directory, or working directory) using the
/path/to/dir or dir string at the end of the prompt itself.

This is the directory where the shell is executing the commands
you enter in the prompt.

You are always operating inside a working directory.



Home directory

The default working directory when you open a terminal, is your
home directory.

Usually the home directory has the form “/home/username”.

The home directory can be abbreviated using the tilde symbol “~”.

Prompt example for user “goofy”: [goofy@hostname ~]$



Absolute paths

An absolute path is defined as specifying the location of a file or
directory from the root directory “/” (it always starts with “/”).

For example: /home/goofy/file1.txt

The specified path must exist on the current system.



Relative paths

A relative path is defined as the path related to the current
working directory and never starts with a “/”.

For example: goofy/file1.txt

The specified path must exist inside the current directory.



Linux file system hierarchy



Execute a command

Commands and programs are regular files that reside inside some
directories.

To execute a command, you can write its full path (absolute or
relative to current directory).

You can invoke a command only by its name if it resides inside a
directory included into the “PATH” variable.

You can execute multiple commands on a single row, by separating
them with semicolon “;”.



Commands manual pages

The commands man and info can be used to print respectively the
manual pages (if present) and the info documents (if present)
about a command.

[goofy@hostname ~]$ man pwd



Print current directory

The command pwd can be used to ask the shell to print the
current working directory.

[goofy@hostname ~]$ pwd

/home/goofy

pwd will print the working directory as absolute path.



List directory content

The command ls can be used to list the files and directories inside
a given directory (or the current directory if nothing is specified).

[goofy@hostname ~]$ ls

file1.txt

[goofy@hostname ~]$ ls /home/goofy

file1.txt



Command arguments

Shell commands often allow (or require) one or more arguments in
order to be executed.

This is the case of ls, that allows you to optionally specify the
directory path of which you want the content listed.



Command options

A special case for arguments are the command options (or flags),
that are typically prefixed with one “-” or two “--” dashes.

Every command can have its own specific options, but usually a
common one is the “--help” (or “-h”) option that prints some
information about the command itself.

For example: [goofy@hostname ~]$ ls --help



Special directories

On a GNU/Linux system every directory contains two special
directories:

▶ . (single dot) – this is the current directory itself

▶ .. (two dots) – this is the parent directory



Change working directory

The command cd can be used to change working directory,
navigating the filesystem.

[goofy@hostname ~]$ cd other_dir

[goofy@hostname other_dir]$ pwd

/home/goofy/other_dir

[goofy@hostname other_dir]$ cd

[goofy@hostname ~]$ pwd

/home/goofy



Copy files and directories

The command cp can be used to copy files and directories.

[goofy@hostname ~]$ cp file1.txt file2.txt

[goofy@hostname ~]$ ls

file1.txt file2.txt other_dir

[goofy@hostname ~]$ cp -R other_dir other_dir2

[goofy@hostname ~]$ ls

file1.txt file2.txt other_dir other_dir2



Move files and directories

The command mv can be used to move (or rename) files and
directories.

[goofy@hostname ~]$ mv file1.txt file3.txt

[goofy@hostname ~]$ ls

file2.txt file3.txt other_dir other_dir2

[goofy@hostname ~]$ mv other_dir other_dir3

[goofy@hostname ~]$ ls

file2.txt file3.txt other_dir2 other_dir3

[goofy@hostname ~]$ mv file3.txt other_dir3

[goofy@hostname ~]$ ls

file2.txt other_dir2 other_dir3

[goofy@hostname ~]$ ls other_dir3

file3.txt



Delete files and directories

The command rm can be used to delete files and directories.

The option “-R” is necessary when deleting directories.

[goofy@hostname ~]$ rm other_dir3/file3.txt

[goofy@hostname ~]$ ls other_dir3

[goofy@hostname ~]$ rm other_dir3

rm: cannot remove ’other_dir3 ’: Is a directory

[goofy@hostname ~]$ rm -R other_dir3

[goofy@hostname ~]$ ls

file2.txt other_dir2



Print a message

The command echo can be used to print a message.

[goofy@hostname ~]$ echo "Some message"

Some message



Print file content

The command cat can be used to print the content of a file.

[goofy@hostname ~]$ cat file2.txt

Hello ,

this is a test file.

Greetings



View file content in a pager

When a file contains a lot of lines, it could be more convenient to
use a pager to visualize the file content.

The command less can be used to view the content of a file inside
a pager.

A pager allows you to navigate the file content back and forth
using the arrow keys ( , ).



Filter file content

The command grep can be used to filter the content of a file.

[goofy@hostname ~]$ grep "lo" file2.txt

Hello ,

[goofy@hostname ~]$ grep "is a" file2.txt

this is a test file.



Create empty file

The command touch can be used to create a new empty file (if the
file already exists, its access and modification times are updated).

[goofy@hostname ~]$ touch file1.txt

[goofy@hostname ~]$ ls

file1.txt file2.txt other_dir2

[goofy@hostname ~]$ cat file1.txt



Create directory

The command mkdir can be used to create a new directory.

[goofy@hostname ~]$ mkdir other_dir1

[goofy@hostname ~]$ ls

file1.txt file2.txt other_dir1 other_dir2

[goofy@hostname ~]$ ls other_dir1



Print past commands

The command history can be used to print the list of previously
executed commands (usually only the last 500-1000 commands are
retained).

[goofy@hostname ~]$ history

-- REDACTED --

134 grep "is a" file2.txt

135 touch file1.txt

136 ls

137 cat file1.txt

138 mkdir other_dir1

139 ls

140 ls other_dir1

141 history



Quoting special characters

To create a file with spaces in its name, you must quote the file
name, or escape the spaces.

To quote, you can use double or single quotes (", ’).

Note that single quotes will preserve the literal value of all
characters, while double quotes will preserve all characters except
for $, `, \, and !.

To escape, you can use the backslash symbol (“\”) to prepend
each special character.



Quoting special characters
Example

[goofy@hostname ~]$ touch single file

[goofy@hostname ~]$ ls

file file1.txt file2.txt other_dir2 single

[goofy@hostname ~]$ rm single file

[goofy@hostname ~]$ touch "single file"

[goofy@hostname ~]$ ls

file1.txt file2.txt other_dir2 ’single file ’



Print environment variables

The environment is a set of variables created by the system when a
shell starts.

Each shell instance has its own environment.

The starting environment of each shell instance is the same.

The command env can be used to print the environment variables.

[goofy@hostname ~]$ env

-- REDACTED --

HOME=/home/goofy

LANG=en_US.UTF -8

PATH=/usr/local/bin:/usr/bin:/usr/local/sbin:

/usr/sbin

PWD=/home/goofy



Variables scopes

Depending on how a variable is created, it can be available inside
the current shell only, or inside the current shell and all its child
processes created from that shell.

In the former case we talk about shell variables, in the latter
environment variables.



Create shell variables

To create a shell variable, write the desired variable name, followed
by the equal sign (“=”) and the value you want to assign.

To avoid problems, only use alphanumeric characters for the
variable name.

To access a variable content, use the dollar sign (“$”) followed by
the variable name.

[goofy@hostname ~]$ my_var =" important value"

[goofy@hostname ~]$ echo $my_var
important value

[goofy@hostname ~]$ echo $LANG
en_US.UTF -8



Create environment variables

The command export can be used to create an environment
variable from a shell variable, or define a new one.

[goofy@hostname ~]$ export my_var

[goofy@hostname ~]$ export my_other_var =" other

important value"

[goofy@hostname ~]$ echo $my_var
important value

[goofy@hostname ~]$ echo $my_other_var
other important value



Text editor

The command nano can be used to open/edit text files directly
inside the shell.

Some key bindings available inside the editor:

exit the editor ⇒ Ctrl + x

save file ⇒ Ctrl + o

show help page ⇒ Ctrl + g



Scripting

A script (or shell script) is a text file that starts with a shebang
(“#!”), followed by the shell interpreter (“/bin/bash”), and
contains one or more commands (one per line).

Usually a shell script has the “.sh” extension.

[goofy@hostname ~]$ cat test_script.sh

#!/bin/bash

pwd

ls



Scripting
Conditional statements

You can decide to execute a command only when a certain
condition is verified.

if <command_1 > ; then

echo "First condition verified"

elif <command_2 > ; then

echo "Second condition verified"

else

echo "No conditions verified"

fi



Scripting
Loop statements

You can execute one or more commands multiple times using a
loop.

The most used loop is the for loop.

for i in {1..10} ; do

echo "$i"
done



Redirecting and piping

You can use a single or double greater-than symbol (“>”, “>>”) to
redirect the output of a command to a file (the file will be created
if it doesn’t exist).

Using “>” will cause all the previous file contents to be deleted.
Using “>>” will cause the command output to be appended to the
previous file contents.

You can use pipe symbol (“|”) to chain the output of a command
to the input of a second command.

[goofy@hostname ~]$ ls > ls_output.txt

[goofy@hostname ~]$ ls >> ls_output.txt

[goofy@hostname ~]$ ls | grep er_d

other_dir2



Remote shell – SSH

The command ssh can be used to connect to a remote system that
is running the SSH server.

After the connection, all the commands issued to the shell, will be
executed on the remote host.

[goofy@hostname ~]$ ssh remotegoofy@remote -host

remotegoofy@remote -host ’s password:

[remotegoofy@remote -host ~]$



SSH keypairs

The command ssh-keygen can be used to create a SSH keypair
that can be used for a password-less login on the remote SSH
server.

The “-t” option can be used to select the key algorithm (usually
rsa, dsa, ecdsa and ed25519 are available).

The “-f” option can be used to specify the filename where to save
the keypair.

[goofy@hostname ~]$ ssh -keygen -t rsa -f my_ssh_key

Generating public/private rsa key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in my_ssh_key

Your public key has been saved in my_ssh_key.pub



Copying SSH public keys to remote hosts

The command ssh-copy-id can be used to copy a local SSH public
key to a remote SSH server.

The “-i” option can be used to specify the SSH public key to copy.

[goofy@hostname ~]$ ssh -copy -id -i my_ssh_key.pub

remotegoofy@remote -host



SSH login with private keys

You can use the “-i” option to specify the SSH private key to use
to login on the remote SSH server.

[goofy@hostname ~]$ ssh -i my_ssh_key

remotegoofy@remote -host

[remotegoofy@remote -host ~]$



Copying files from/to remote hosts

The command scp can be used to copy files from/to a remote
SSH server.

The “-i” option can be used to specify the SSH private key to use
for the login process.

[goofy@hostname ~]$ scp -i my_ssh_key

remotegoofy@remote -host:file_from_remote

file_to_local

[goofy@hostname ~]$ scp -i my_ssh_key

file_from_local

remotegoofy@remote -host:file_to_remote



Other commands

▶ Compression: tar, gzip, xz

▶ Compression & print: zcat, bzcat, xzcat

▶ Text manipulation: cut, sort, uniq, sed

▶ Integrity check: md5sum, sha256sum, sha512sum



Final thoughts

The commands presented are only few of those available on a
standard GNU/Linux system (the same applies to their options).

When exploring new commands, keep in mind the “-h”/“--help”
options to print help information (and also the “man” command).

Avoid blindly running commands by copy–pasting them from some
obscure internet webpage.



Questions?



Thank you


