Priroda Documentation

Материал из KNCWiki.

By Dr. D.N.Laikov (http://www.physto.se/~laikov/) . [Corresponds to the version 5 of the code -- Grigory]

Содержание

- 1 Methods
- 1.1 GGA Density Functional Theories
- 1.2 Hybrid DFT Methods using Resolution-of-Identity (RI) approximation.
- 1.3 Second-Order M\oller-Plesset Perturbation Theory within RI approximation.
- 1.4 Sofisticated Wavefunction Methods
- 2 Input Summary
- 2.1 \$system
- 2.2 \$control
- 2.3 \$guess
- 2.4 \$dft
- 2.5 \$scf
- 2.6 \$atoms
- 2.7 \$grid
- 2.8 \$optimize
- 2.9 \$thermo
- 2.10 \$d2edr2
- 2.11 \$nmr
- 2.12 \$molecule
- 3 Input Examples

Methods

Performance Considerations for Using Various Methods

GGA Density Functional Theories

These methods are the fastest in the program and allow analytic evaluation of the second derivatives of the energy.

It is advantageous to use a GGA DFT for preliminary structure optimizations and for generating starting hessians to speed up further calculations using other more expensive methods like hybride DFT, RI-MP2 and so on. We highly recommend this strategy.

The memory requirements for these methods are approximately $8 * N * N * 3$ bytes for energy and gradient, and twice this amount for analytic hessian calculation, where N is the basis set dimension. Disk space requirements are very modest and grow cubically for hessian calculation up to some few gigabytes in largest cases.

In parallel execution most of the memory and all disk storage is used on the master node. WARNING: make sure that temporary files are written to a fast local disk, and not to a network drive.

Hybrid DFT Methods using Resolution-of-Identity (RI) approximation.

These are brand new in the program and have been just implemented at the end of November 2004. Note that these methods require special auxiliary basis sets. The rate limiting step of the calculation is the formation of the Exchange Matrix using three-center Coulomb-type integrals. The right choice of memory and disk settings is important for achieving high performance in large calculations. See the discussion of the RI-MP2 theory below.

Second-Order M\oller-Plesset Perturbation Theory within RI approximation.

The Resolution-of-Identity approximation consists in representing products of basis functions as linear combinations of auxiliary basis functions so that a four-index Coulomb integral can be evaluated in terms of three- and two-index quantities:

```
(ij|kl) ~= (ij|m) [m|n] (n|kl)
where \([\mathrm{m} \mid \mathrm{n}]\) is the inverse of the Coulomb matrix ( \(\mathrm{m} \mid \mathrm{n}\) ).
```

The advantage of such approximation is the reduced storage requirement, faster integral evaluation and better scalability in parallel execution. In our RI-MP2 implementation the Hartree-Fock (HF) equations are solved using the RI aproximation, followed by the MP2 energy and the three- and four-index desity matrix formation, as well as subsequent coupled-perturbed HF solution.

The integrals over basis functions are written to disk on each node, the various transformed integrals are formed and sorted in memory and stored on disk. For large calculations more memory available to the program reduces disk transfer and improves performance. In the worst case memory requirements grow quadratically with the system size and disk storage has a cubic scaling.

It is highly IMPORTANT to use separate disk drives for each running process during parallel runs on multiprocessor systems. [Unfortunately, for our clusters it is not possible -- Grigory 14:23, 30 июня 2006 (MSD)]

Our implementation is scalable in principle up to Nproc $=\min (N a t, N o c c)$, where Nproc is the number of processors, Nat is the number of atoms and Nocc is the number of occupied correlated orbitals. It is important that the Nocc were as close as possible to a multiple of Nproc, for example if Nocc=14 then Nproc=2, 7 or 14 would be the best choice, $\mathrm{Nproc}=3$ or 5 is acceptable, Nproc=6 is quite poor, and Nproc=13 a very bad choice.

The storage of all three-index quantities is distributed. On many parallel architectures with gigabytes of memory per node one can use RAM-disks to avoid disk usage, particularly if there is only one physical disk per two processors, which is unfortunately a typical configuration of a computer cluster.

Sofisticated Wavefunction Methods

Coupled Cluster and Perturbation Theory
Our implementation of vatious correlated wavefunction methods is intended for use on parallel platforms and is scalable up to the number of processors equal to the number of correlated electrons in beta subsystem.

For all four-index quantities distributed storage is used, memory requirements grow cubically and disk storage grows as fourth power of the problem size. When the number of virtual orbitals is much larger than the number of occupied orbitals, the rate limiting step for CCSD or MP4SDQ is the evaluation of the doubles-doubles term including two-electron integrals with all four indices in the virtual space. To improve performance in this case it is desirable to use more memory.

Input Summary

The program uses a kind of NAMELIST free format input. Data are organized in groups marked with a \$keyword and ending with \$end, for example \$system mem=128 \$end. Within each input group variable names can be abbreviated, like in above where "mem" was used as an abbreviation for "memory". Variables can be scalar or arrays, in the latter case one has an option to modify only some elements of an array using indices, for example \$guess na(85)=86,85 \$end assigns value 86 to 85 th element of "na", and value 85 to 86th element.

Most of the parameters have appropriate default values... Some should be set according to the problem being studied...

\$system

[Please not that on our clusters this group not to be used, if you submit your jobs with a pbsprirodaX script. The \$system group will be created automatically based on your -mem and -disk command-line options -Grigory 14:23, 30 июня 2006 (MSD)]

\$control

\$guess

\$dft

\$scf

'restrict=\%d	0 - spin-unrestricted
'	1 - spin-restricted (available only for few methods)
'	By default restrict=1
,	if the system has an even number of electrons,
'	and restrict=0 otherwise.
''convergence=\%f,\%f	scf/cp-scf convergence:
!	$1 \mathrm{e}-6,1 \mathrm{e}-3$ by default (recommended).
'	You may want to decrease it to 1e-5
,	during preliminary geometry optimizations
'	in difficult cases - to save the time.
,iterations=\%d,\%d	number of iterations/microiterations.
'procedure=\%s	a procedure to solve the scf equations:
!	nr - Newton-Raphson quadratically-convergent
'	(default for GGA DFT)
,	bfgs - BFGS hessian update
'	If one procedure fails you may want to try another...
'd1small=\%d	1 - include small component density when solving
'	linear equations of quadratically-convergent SCF
'	(for scalar-relativistic pure-DFT)
'	0 - discard these contributions (default)
'	This results in faster calculation,
'	but may fail to converge for molecules
'	with heaviest atoms.
'core=\%d	number of core electrons (for HF-based methods),
,	by default it is computed from an atom table
,	-- see \$atoms

\$atoms

\$grid

'accuracy=\%f	accuracy (of xc-energy per atom) of the adaptively
,	generated grid (for DFT methods),
'	$1 \mathrm{e}-8$ by default (fine grid).
'	Value $1 \mathrm{e}-7$ can be used to speed up some geometry optimizations with tolerance<=1e-4,
'	Value 1e-9 can be used for very accurate
'	calculations.

\$optimize

'saddle=\%d	1 - optimize a saddle point
'	0 - optimize to a minimum (default)
tolerance=\%f,\%f	tolerance on gradient (first value)
!	and displacement (second value) in au. default is $0.0001,0.01$,
'	if only the first is given, the second is
'	computed as 100 times as much (recommended default)
itrust=\%f,\%f,\%f	trust radius - maximum value, minimum value,
'	and initial value. If only the first is specified,
'	then the minimum value is $1 / 16$ thereof,
'	and the initial value is $1 / 4$ thereof.
'follow=\%d	follow n-th eigenvector (for saddle point search)
'steps=\%d	number of optimization cycles (50 by default)
'cartesian=\%d	0 - use redundant internal coordinated (defaul)
-	1 - use cartesian coordinated (last resort)
'back=\%d	1 - trace IRC path backwards
'	0 - trace IRC path forwards
'points=\%d	optimize N points during an IRC run,
'	or do N constrained geometry optimization
-	during a scan run.
radius=\%f	radius in mass-weighted coordinates
'	for IRC path optimization : the distance
'	between adjacent IRC points will be roughly twice
'	as much.
'coordinated=\%d,\%	a list of redundant internal coordinates to use.
!	By default it is generated automatically.
,	Each coordinate is specified by 5 integers:
'	1,i,j,0,0 - distance i-j
'	2,i,j,k,0 - angle i-j-k
'	3,i,j,k,l - torsion i-j-k-l
'	4,i,j,k,l - special coordinate for linear fragments
'	5,i,j,k,l - special coordiante for linear fragments
ifix=\%d,\%d,	a list of internal coordinated to be kept fixed
!	during geomety optimization. The format is like above
'value=\%f,\%f, .	the values of the fixed internal coordinates
!	(in angstroms and degrees). By default these are
'	computed from input geometry. For the scan run type
,	this is a list of all initial values followed
,	by the list of final values. Example:
'	\$optimize
'	fix $=1,7,9,0,0,1,8,10,0,0,3,8,7,9,0,3,10,9,7,0$
'	$\mathrm{val}(1)=1.6, \quad 1.7$
'	$\operatorname{val}(5)=2.0, \quad 2.1$
,	points=5
,	\$end
'	In this case 5 geometry optimizations will be done
I	with values 1.6, 1.7, 1.8, 1.9, 2.0 for distance 7-9
'	values 1.7, 1.8, 1.9, 2.0, 2.1 for distance 8-10
'	and with angles 8-7-9 and 10-9-7 fixed at their
I	input values.
Igradient=\%d	when using second derivatives precomputed
$!$	by a theoretical method/basis set other than currently
'	used, specify gradient=0 to exclude gradient terms
'	in internal/cartesian transformation at the first
'	geometry. Otherwise use the default.
print=\%d	printing:
!	0 - minimal
'	1 - detailed

\$thermo

\$d2edr2

	step length for numeric differentiation of
potential energy surface,	
for numerical hessian calculation.	

\$nmr

```
'standard=%f,%f, . . .
    Shielding constants for each atomic number to use as
    standards in NMR chemical shift calculations. One may
    specify values for atoms present in the molecule only,
    for example:
        standard(1)=31.3915
        standard(6)=181.9921
        which is computed for Si(CH3)4 can be used for a series
        of hydrocarbons under study.
points=%f,%f,%f,
    %f,%f,%f,
            An option to add points in space (with x,y,z coordinates in
        angstroms) for which magnetic shielding tensors will be
        computed in addition to the nuclear centers.
```


\$molecule

This input group has special format with ordered data:

Input Examples

O 2 triplet riMP2 relativistic optimization

```
\$control
' task=optimize
theory=riMP2
basis=basis4.in
; four=1
,\$end
,\$optimize tol=1e-5 \$end
'\$molecule
- mult=3
, z-matrix
, set=L1
    8
        \(1 \quad 1.25017467\)
\$end
```

UO2F2 relativistic PBE0 energy, L2 basis set, print orbitals.

```
$control
! task=energy
' theory=riDFT
| basis=basis4.in
| four=1
' print=charges+bonds+vectors+molden
$\mp@code{nd}
$$scf iter=100 conv=1e-6 $end
$dft functional=PBE1 $end
$molecule
z-matrix
| set=L2
92
    9 1 2.06303279
    9
    8
    8 1 1.78032789 3 92.742132 -2 92.742273
'$end
```

An Alder-ene transition state, Hessian calculation, non-relativistic, broken-spin.

Получено с http://wt.knc.ru/wiki/index.php/Priroda_Documentation

- Последнее изменение этой страницы: 10:46, 13 мая 2008.
- K этой странице обращались 1986 раз(а).
- Содержимое доступно в соответствии с GNU Free Documentation License 1.2.
- Политика конфиденциальности
- Описание KNCWiki
- Отказ от ответственности

